

7
Using VBA in Access

WHAT’S IN THIS CHAPTER?

 ‰ Using events

 ‰ Employing good practices with VBA procedures

 ‰ How to evaluate expressions in VBA

 ‰ Using recordsets

 ‰ Using multiple recordsets

 ‰ Coding behind forms and reports

 ‰ The VBA debugging environment

 ‰ Determining the value of variables

 ‰ Handling common VBA challenges

 ‰ Concatenating strings

 ‰ Handling VBA errors

In the early days of programming, procedural languages ruled, meaning that the overall
 program execution was very structured and code was generally run in a very specifi c order.
The main body of any of these programs had to cover every possibility: Display a screen
to the user, gather input, perform edit checking, display messages, update the database (or
simple fi les in those days), and close when everything was done. The main program also had
to deal with every option or side request that the user might make. This made it diffi cult to
understand the entire program, and it was tough to make changes because everything had
to be retested when a modifi cation was made. Those lumbering beasts included FORTRAN,
COBOL, RPG, Pascal, and earlier forms of Basic. Millions of lines of code were written in
these languages.

c07.indd 173c07.indd 173 7/2/2010 3:39:10 PM7/2/2010 3:39:10 PM

174 x CHAPTER 7 USING VBA IN ACCESS

Fortunately, those days are over for VBA programmers. VBA is an event-driven language. In every
Access form and report, a variety of events are waiting for you to use. They are available when the
form opens and closes, when records are updated, even when individual fi elds on the screen are
changed. They’re all there at your fi ngertips. Each event can contain a procedure, which is where we
get back to the procedural roots of standard programming. Although each procedure runs from top
to bottom, just like in the old days, it only runs when the event fi res. Until then, it sleeps quietly, not
complicating your logic or slowing down your program.

Event-driven programming makes it much easier to handle complex programming tasks.
Because your code will only run when an event occurs, each procedure is simpler and easier to
debug.

In this chapter, you’ll explore the nature of VBA events and see how the most common events are
used, and you’ll look at how two different sections of your VBA code can run at the same time. The
chapter provides some guidelines about when and how to use Public and Private procedures, and
data types, and also outlines structural guidelines for procedures, shows some common string and
date handling techniques, and explains how to prevent rounding errors in your calculations. Class
procedures, a powerful and useful tool, are covered in great detail in Chapter 8.

WHEN EVENTS FIRE

Events are at the heart of event-driven programming — which is no surprise. What can be surpris-
ing to novice programmers is the sheer number of events available to use. They all beg to have some
code behind them. In reality, however, very few events are used on a consistent basis. Most of them
have absolutely no code behind them, and never will in normal usage. The trick is to know which
ones are important and commonly used, and which ones are obscure and rarely ever used. They all
appear equally important in Access Help.

Common Form Events

The following table provides a list of common events and how you might want to use them. By
knowing how to use this basic set of events, you’re most of the way there to understanding event-
driven programming in Access VBA.

FORM EVENT DESCRIPTION

On Open Fires before the On Load event (so you can’t reference any bound controls on

your form yet because they haven’t been instantiated) and befo re the recordset

is evaluated for the form. This means you can use this event to change the

recordset (by changing the WHERE or ORDER BY clause) before the form continues

to load. Cancel this event by setting its intrinsic parameter Cancel = True, so

the form will close without continuing to the On Load event.

On Load Fires after the recordset for the form has been evaluated but before the form

is displayed to the user. This off ers you an opportunity to make calculations,

set defaults, and change visual attributes based on the data from the

recordset.

c07.indd 174c07.indd 174 7/2/2010 3:39:13 PM7/2/2010 3:39:13 PM

When Events Fire x 175

FORM EVENT DESCRIPTION

Before Update To perform some data edits before the user’s changes are updated in the database,

use this event. All the fi eld values are available to you, so you can do multiple fi eld

edits (such as HireDate must be greater than BirthDate). If something doesn’t

pass your validity checks, you can display a message box and cancel this event by

setting the intrinsic parameter Cancel = True. This event also fi res before a new

record is inserted, so you can place edits for both new and changed records here.

On Double

Click

A non-intuitive, special-purpose event. If you build a continuous form to display

records in a read-only format, your users may expect to drill down to the detail of

the record by double-clicking anywhere on the row. But what if they double-click

the record selector (the gray arrow at the left side of each row)? The event that

fi res is the form’s On Double Click event. By using this event, you can run the

code that opens your detail form. This gives your user a consistent experience

and the confi dence that your applications work no matter what.

On Unload This event can be used to check data validity before your form closes. It can be

canceled, which redisplays your form without closing it. It also has another use-

ful behavior. If it is canceled during an unload that occurred because the user is

closing Access (using the X button in the window heading), canceling the Unload

event also cancels all other form closures and the closure of Access itself. This

allows you to prompt the user with an “Are you sure?” message box when the

user tries to close Access.

On Current This is one of the most overused events by novice programmers, but it does have

some good uses. It fi res every time your form’s “current” record changes. The

current record is the one that the record selector (the gray arrow on the left side

of each record) points to. It also fi res when your form initially loads and positions

to the fi rst record in your recordset. One good place to use On Current is on a

continuous form where one of the buttons below is valid for some records but not

for others. In the On Current event, you can test the current record and set the

Enabled property of the button to True or False as appropriate. Because this

event fi res so often, it can be hard to control and may cause performance issues.

Use it only when you need to.

On Delete Fires after each record is deleted, but before the delete is actually fi nalized,

enabling you to display an “Are you sure?” message. Then the user has an oppor-

tunity to decide whether or not to delete this individual record. Use this in con-

junction with the Before Delete Confirm event.

Before Delete

Confirm

Fires before a group of deletes is fi nalized. If you cancel this event, none of the

records in the group is actually deleted. This event also has a Response param-

eter; it can be used to suppress the normal Access message asking the user if he

wants to delete the group of records.

On Activate Fires after the form’s On Open and On Load events, just before the form is dis-

played. It also fi res whenever the form regains the focus, so it can be used to refresh

or requery the data on the form after the user has returned from another form.

c07.indd 175c07.indd 175 7/2/2010 3:39:13 PM7/2/2010 3:39:13 PM

176 x CHAPTER 7 USING VBA IN ACCESS

Common Control Events

The following table lists some commonly used events for controls on forms (such as text boxes,
combo boxes, command buttons, and so on).

CONTROL EVENT DESCRIPTION

On Click This one is obvious; it fi res when the control (most likely a command button)

is clicked. This is where you put the code to run when the user clicks a

button.

Before Update Useful for controls whose value or state can change, such as checkboxes, text

boxes, and combo boxes. It fi res just before a change to the control is committed,

so you have a chance to validate the new value of the control. If this event is can-

celed, the control reverts to its previous value. You can ask the user a question

in this event using a message box, such as “Are you sure you want to change the

Invoice Number?” You can then continue normally or set Cancel = True based

on the response.

After Update Fires after a change to the control is made. This is a good time to control the next

fi eld to receive the focus, manipulate other fi elds in response to this one, or per-

form other actions (these techniques are used in Chapter 14).

On Double

Click

Fires when a control is double-clicked. Useful when you want to provide a

method of drilling down to a detail form from a read-only index form. Make sure

you add the code to open the detail form to every double-click event of every

fi eld in the detail section. If your record selector arrow is visible, include your

drill-down code to the form’s On Double Click event (see previous

section).

Common Report Events

The following table lists some commonly used report events. These events can run code to custom-
ize and add fl exibility for your users when displaying reports.

REPORT EVENT DESCRIPTION

On Open Fires before the recordset is evaluated for the report. As with forms, you can

use this event to change the recordset (by changing the WHERE or ORDER BY

clause) before the report continues to load. This can be especially helpful when

you use a form to prompt the user for selection criteria before the report contin-

ues to load (described in detail in Chapter 15). This event can be canceled by

setting the Cancel parameter to True, which will prevent the report from

continuing to open.

c07.indd 176c07.indd 176 7/2/2010 3:39:14 PM7/2/2010 3:39:14 PM

When Events Fire x 177

REPORT EVENT DESCRIPTION

On Activate Fires after the On Open event and just as the report window is displayed to the

user. The main thing this event is used for is to maximize the Access windows

using DoCmd.Maximize. This allows the user to see more of the report. However,

you’ll probably want to restore the Access windows to their previous sizes when

the report closes, which brings us to the On Close event.

On Close Fires when the report closes. A common line of code to include here is DoCmd

.Restore to restore the sizes of your form windows that were maximized in the

On Activate event.

On No Data Fires after the On Open event when the report evaluates the recordset and

discovers that there are no records. This can easily happen if you allow users

to specify the criteria for the report and they choose a combination of values

that doesn’t exist in the database. You can display a friendly message box to

the user, and then set the intrinsic Cancel parameter to True, which closes the

report.

On Load Introduced in Access 2007. The On Load event fi res after the On Open event. In

this event, the recordset for the report has already been evaluated and data from

the fi rst record is available.

Asynchronous Execution

Sometimes, Access runs two areas of your VBA code simultaneously, even though you’ve placed the
code into different events or even in different forms and reports. This ability for Access to start run-
ning one procedure of code before another one is fi nished is called asynchronous execution. Most
of the time asynchronous execution happens without you (or your user) really noticing, but it can
sometimes cause problems, so you should know when it happens and how to work with it.

OpenForm

The most common asynchronous execution you’ll encounter is when you open a form using the
OpenForm method. Most of the time you won’t notice it, but here’s what really happens: When
the OpenForm statement runs, the form you ask for starts to open, along with all of its On Open,
On Load, and On Current events. However, any code after the OpenForm command also continues
to run at the same time. Usually, not much happens at this point, so there’s no harm done.

However, there are times when you would like the execution of the code in the calling form to stop
until the user is done with the newly opened form. This is often the case when you are prompting
the user for selection criteria during the Open event of a report (see Chapter 14), or when you open a
form to add a new record from an index form.

In this latter case, you normally want to requery the index form to show the newly added record,
but you must wait for the user to fi nish adding it. If you perform a requery right after the
OpenForm, your code will continue merrily along and requery your fi rst form, only within
milliseconds after your second form has started to open. No matter how fast your user is, that’s

c07.indd 177c07.indd 177 7/2/2010 3:39:14 PM7/2/2010 3:39:14 PM

178 x CHAPTER 7 USING VBA IN ACCESS

not enough time for them to add the new record. So your requery runs before the new record is
added, and the new record will not appear on your index form.

There is a simple solution to the normal asynchronous execution of the OpenForm command. It’s
called Dialog mode.

Dialog Mode to the Rescue

To prevent asynchronous execution when a form opens, use Dialog mode. Instead of:

DoCmd.OpenForm FormName:=˝frmMyForm˝

specify this:

DoCmd.OpenForm FormName:=˝frmMyForm˝, WindowMode:=acDialog

code snippet Prevent Asynchronous Execution When A Form Opens in ch07_CodeSnippets.txt

Note the use of named parameters in these examples — FormName:=˝frmMyForm˝,
for instance. Functions and subroutines in VBA can receive parameters (often
called arguments) using either positions or names. If the names are not specifi ed,
VBA assigns parameters based on their position: fi rst, second, and so on. When
you see extra commas indicating missing parameters, you know that positional
parameters are being used. Named parameters are much clearer to read and
understand, and experienced programmers often use them.

Dialog mode accomplishes two things:

 ‰ It opens the form in Modal mode, which prevents the user from clicking on any other Access
windows until they are done with this form. Modal forms are hierarchical in nature, meaning
they can be opened one after the other with the most currently open form the only one acces-
sible. As you close the current Modal form, the one opened immediately before it is now the
only one accessible and so on. All Modal forms must be closed before you can navigate to
any other database object.

 ‰ It stops the execution of the calling code until the newly opened form is either closed or
hidden.

This second feature of Dialog mode is what is so helpful in preventing Access from trying to run two
areas of your code at once.

Notice that the code stops until the form is closed or hidden. This is the basis for many clever uses
of Dialog mode where values from the called form are used elsewhere. If you just hide the form (by
setting its Visible property to False), the values on the form are still there and ready for you to
reference, even though the code in the calling form now continues to run. This is the technique for
gathering selection criteria and building SQL statements, which is described in Chapter 14.

c07.indd 178c07.indd 178 7/2/2010 3:39:14 PM7/2/2010 3:39:14 PM

VBA Procedures x 179

There is a disadvantage to using Dialog mode. While a form is open and visible
in Dialog mode, any report that is opened will appear behind the form and won’t
be accessible. If you encounter this problem, you can use another technique
to control the timing of form requeries. One technique is to open the second
form normally and allow the code in the fi rst form to complete. Then, put your
requery code in the fi rst form’s On Activate event to fi re when the focus returns
to the fi rst form.

VBA PROCEDURES

VBA code can be structured clearly and effi ciently by breaking up sections of code into logical
“chunks” called procedures. In this section, you’ll see how to use the different types of VBA proce-
dures and to employ good practices in their design.

Function or Sub?

A common area of confusion among novice VBA programmers is whether to write a function or a
sub (short for “subroutine”). Some developers create functions for every procedure they write, in the
belief that they are better in some way. They aren’t. Functions and subs are just two kinds of proce-
dures, and they both have their purposes. A quick way to determine which one is more appropriate
is to ask this question: Does my procedure do something or return something?

If the purpose of your procedure is to compute or retrieve a value and return it to the calling proce-
dure, then of course you should use a function. After all, functions are designed to return a single
value to the calling procedure. They do it effi ciently and easily, and they can be used directly in que-
ries and calculated controls on forms and reports. They can even be used directly in macros.

Functions tend to have names that are nouns, like LastDayOfMonth or FullAddress. For example, a
control on a report might have this Control Source property value:

=LastDayOfMonth(Date())

The fi eld would display the results of calling some function called LastDayOfMonth with the param-
eter value of today’s date.

On the other hand, if the main purpose of your procedure is to do some action and there is no
clear-cut value to return, use a sub. Many programmers think that they must return something,
even if they have to make up some artifi cial return code or status. This practice can make your
code harder for others to understand. However, if you really need a return code or status after the
procedure fi nishes, it is perfectly okay to make it a function.

Subs tend to have names that are verbs like LoadWorkTable or CloseMonth. In practice, the code
looks like this:

LoadWorkTable

Pretty easy, right? Any developer looking at this line of code can see the obvious: A sub called
LoadWorkTable is being called, and it doesn’t return a value.

c07.indd 179c07.indd 179 7/2/2010 3:39:15 PM7/2/2010 3:39:15 PM

180 x CHAPTER 7 USING VBA IN ACCESS

It is possible to call a function as if it were a sub, without parentheses around the parameters. In
that case, the function runs, but the return value is discarded. This usually is not a good coding
practice, but you may encounter it in existing code.

Public or Private?

Another decision that you have to make when you create procedures is whether to make them
Public or Private. By default, Access makes procedures you create Public, but that’s not
necessarily what you want.

If you are working in a standalone module (those that appear in the Modules area of the Access
Navigation Pane), the rules are a little different than if you are working in code that resides in a
form or report. Form and report modules are intrinsically encapsulated as class modules so their
Public procedures aren’t as public as you might expect. Let’s take a look at procedures in stand-
alone modules fi rst.

Public and Private Procedures in Modules

Public functions and subs in standalone modules are just that — public property. Every area of your
application can see them and use them. To do that, Public procedures in modules must have unique
names. Otherwise, how would your code know which procedure to run? If you have two Public
procedures with the same name, you’ll get a compile error.

Private procedures in modules are very shy — they can’t be seen or referenced by any code outside
their own module. If you try to reference a Private procedure from a different module or another
form or report, Access insists (at compile time) that no such procedure exists.

The hidden nature of Private procedures is their best feature. Because they are hidden, their names
need to be unique only within their own module. Therefore, you can name them whatever you
want — you don’t have to worry about them confl icting with other procedures in your application.

This feature really comes into play when you reuse code by importing modules into other data-
bases, maybe even ones you didn’t create. If most of your module procedures are Private, you’ll
have a minimum of naming confl icts because the rest of the application can’t see them. The Public
procedures still need to have a unique name, which is why many procedures that are meant to be
imported have interesting prefi xes such as the author’s initials or the company name.

Public and Private Procedures in Forms and Reports

Private procedures in forms and reports behave just like Private procedures in modules. They
can’t be seen or referenced from outside the form or report. The event procedures that Access auto-
matically builds behind your forms and reports are automatically set to Private. This makes sense
because Form_Open and OnClick events are useful only inside that particular form or report. Also,
these procedures need to have standard names, which could result in a big mess of duplicate names
if they were Public.

In reality, this problem wouldn’t occur. The code behind your forms and reports isn’t like the code
in normal modules. Access calls them class objects, but they behave like class modules, which are
covered in Chapter 8. You can see this in the Visual Basic Editing window, as shown in Figure 8-1.
Note the three headings: Microsoft Access Class Objects, Modules, and Class Modules.

c07.indd 180c07.indd 180 7/2/2010 3:39:16 PM7/2/2010 3:39:16 PM

VBA Procedures x 181

FIGURE 7-1

It turns out that even a Public procedure that you build in the code behind a form can be named
the same as a procedure in another form. That’s because class objects require that you specify the
name of the class object (in this case, the form name) before the name of the procedure if you want
to call it from outside the form. However, this is rarely needed. One possible situation might be
some form initialization code that you want to run from outside the form, such as InitializeForm.
If you want to do it, here’s the syntax:

Form_frmMyFormName.InitializeForm

code snippet Initialize Form in ch07_CodeSnippets.txt

Notice that the prefi x Form_ and the name of the form qualify the InitializeForm procedure
name. Because many forms could have the same procedure name, you need to tell the code which
form’s procedure you want to run.

Coupling and Cohesion

The design of your procedures is important to delivering understandable, readable code. Two
principles that guide the logical design of procedures (functions or subs) are coupling (bad) and
cohesion (good). This topic is not specifi c to VBA, but it bears mentioning since we’re working
with procedures.

c07.indd 181c07.indd 181 7/2/2010 3:39:16 PM7/2/2010 3:39:16 PM

182 x CHAPTER 7 USING VBA IN ACCESS

Uncouple Procedures

Coupling is the tempting tendency to write long, complex procedures that do lots of things; in other
words, coupling multiple tasks into one procedure. This should be avoided. As a guideline, write
procedures that compute just one value or perform a single task. Some signs that you might have
coupling in your procedures include:

 ‰ Procedure names that include multiple ideas, such as ComputeValuesAndReloadWorkTables

 ‰ Procedures with large blocks of code that have section header comments explaining what
each section does

 ‰ Procedures that include “modes,” with parameters that tell the procedure what to do

If your procedure couples multiple tasks together, you can run into problems like these:

 ‰ Your procedure is too complicated, making it harder to write and debug.

 ‰ The different tasks in your procedure can’t be used separately; it’s all-or-nothing.

 ‰ If you make a change to your procedure, the whole thing needs to be retested. You can’t trust
that your little change didn’t affect other parts of the procedure. Remember the common pro-
grammer’s lament: “But all I changed was . . .”

If you fi nd yourself writing long procedures with these coupling problems, take a deep breath and
step back from it for a minute. Try to identify chunks of code that do something simple and cohe-
sive. As a rule, procedures should do or calculate one thing, and should do so independently using
parameters that are passed to them.

You may wonder how to build procedures that must be complex. Sometimes there is no way to avoid
complexity, but you can hide a lot of complexity by breaking your logic into smaller functions and
subs, then calling them where appropriate. That way, each one of your procedures can be written
and debugged separately. If you are working as a team, the procedures can even be written by differ-
ent developers.

Adhere to Cohesion

Cohesion means that each procedure should perform one function, and should be able to do its
thing without a lot of help or knowledge from outside the procedure. It shouldn’t rely on global vari-
ables or other objects to exist when the procedure is invoked. Some signs of a poor cohesion are:

 ‰ Procedures that include duplicate blocks of code

 ‰ Procedures that expect forms or reports with specifi c names

 ‰ Use of global variables, especially when they are expected to retain their value for a long time

 ‰ Hard coding of system environment information such as fi le paths

 ‰ Hard coding or special handling of certain records or values in tables

Hard coding is the practice of using values in code that would be more appropriate in a confi gurable
lookup table or some other easy-to-change place. For example, many poorly written applications

c07.indd 182c07.indd 182 7/2/2010 3:39:17 PM7/2/2010 3:39:17 PM

VBA Procedures x 183

hard code paths to fi les. The moment those applications are moved to another computer, they break.
Another more insidious example is the use of values lists for combo boxes in forms. These seem so
easy to set up, but they are just another instance of hard coding that makes your application less
robust and more diffi cult to change over time. A better approach for a list of values that you don’t
think will change (or that you need to code against) is to put them in a table that doesn’t have a
maintenance form. This prevents your user from adding or removing the critical values your code
depends on, but allows you fl exibility over time. If you like, you can use a specifi c naming conven-
tion (as an extension of Reddick naming conventions) for these value list tables, such as tval instead
of tlkp or tbl.

To improve cohesion, think of the old black-box principle of programming: You should need no
knowledge of how a procedure produces its result, only that given valid input, it will produce the
correct output. Along the same lines, the procedure should need little knowledge of the world
outside to do its job. Each procedure you write should perform one task or calculation and need a
minimum of special knowledge from outside its own boundaries. The best way to send information
into a procedure is through parameters, not by using global variables or referring to specifi c forms
or reports.

All this being said, cohesion is a spectrum, not a fi nal black-or-white goal. Using VBA in Access
sometimes calls for the use of global variables in controlled scenarios, or referring to an open form,
or duplicating some code. It’s best to be aware of coupling and cohesion principles so that you can
make good coding decisions.

Error Handling

All of your procedures should have at least a minimum level of error handling. There are easy ways
to implement simple error handling that can help you debug your code and protect your users from
errors (both expected and unexpected). This topic is covered in much greater detail later in this
chapter.

Using Variables

When using variables in your VBA code, there are several things to remember to ensure that your
code runs smoothly. Choosing the appropriate data type for each variable is critical, and it’s also
important to use global variables correctly.

Naming conventions for variables are important. The Reddick naming conventions for variables are
described in Appendix G. If you get into the habit of naming your variables consistently, your code
will be easier to maintain over time, faster to debug, and look more professional.

Using Appropriate Data Types and Sizes

First, make sure that your variable types will handle the size of data they are expected to store.
Many overfl ow errors occur because an attempt was made to store an AutoNumber key value from
a table in a variable defi ned as an Integer. This may work fi ne during testing because an integer can
store numbers with values up to 32,767. Then, when a user starts adding more data, the application
breaks on an overfl ow error.

c07.indd 183c07.indd 183 7/2/2010 3:39:17 PM7/2/2010 3:39:17 PM

184 x CHAPTER 7 USING VBA IN ACCESS

It’s a good idea to defi ne variables with the maximum size that is possible to occur. AutoNumber
fi elds should be stored in variables defi ned as Long (which is the same as the Long Integer in Access
tables). Defi ning a variable as String allows it to store very long strings, whether they are defi ned as
Text or Memo in a table.

If a variable can possibly contain a Null, then you must defi ne it as a Variant, in which case it will
be able to store just about anything that you throw into it — a messy approach, and one that takes
Access a bit longer to process. It’s usually better to decide what kind of data each variable is going
to hold; then set the appropriate data type so that Access doesn’t have to fi gure out what’s in there
every time it uses the variable. Sometimes, however, it’s useful to allow a variable to contain a Null,
especially when there might not always be data to load into the fi eld. If you do use a Variant data
type, use it because there’s a specifi c reason that it might be passed a Null, not because you don’t
know what type it should be.

If you don’t specify a variable’s data type, it is a Variant by default. A common error is to defi ne
more than one variable on a single line of code, like this:

Dim strCallingForm, strReportTitle as String

Many novice VBA programmers think that both variables in this example are defi ned as
Strings — they won’t be. VBA requires that each variable have its data type explicitly defi ned. In this
example, strCallingForm will be defi ned as a Variant because its data type wasn’t specifi ed.

You can defi ne the two string variables on one line like this:

Dim strCallingForm as String, strReportTitle as String

code snippet Defi ne Two Strings On One Line Of Code in ch07_CodeSnippets.txt

This style is technically correct (both variables are defi ned as Strings), but the second variable is easy
to miss when you are looking at your code. The clearest and most consistent style for defi ning vari-
ables is to give each one its own line:

Dim strCallingForm as String
Dim strReportTitle as String

This may take an extra line of code, but it is much easier to read and understand.

Using Global Variables

Global variables are variables that retain their value until they are changed or until the application
stops. They can be handy, but they should be used in specifi c ways to avoid problems. To defi ne a
global variable, simply use Global instead of Dim, like this:

Global gstrCallingForm As String

code snippet Dimensioning A Global Variable in ch07_CodeSnippets.txt

Notice the naming convention: g for Global, str for String, and then the variable name.

c07.indd 184c07.indd 184 7/2/2010 3:39:17 PM7/2/2010 3:39:17 PM

Evaluating Expressions in VBA x 185

A global can be defi ned in any standalone module; it doesn’t matter which one. You can refer to it
and set its value from anywhere in your application (that’s why it’s called global). However, you prob-
ably want to designate a module to store all your main reusable application code, which is where you
should defi ne your global variables. You could name this module basGlobal or something similar.

Global variables, however, have a problem. If your code is interrupted — after an error, for
example — the global variables are cleared out. There are two ways to reduce the impact of this
little problem. The best way is to use the value in global variables for a very short time, perhaps
a few milliseconds. Globals can be used like parameters for objects that don’t accept true param-
eters, such as forms. For example, the form daisy-chaining logic given in Appendix I uses a single
global variable to pass the name of the calling form to the called form, but the called form imme-
diately stores the name in a local module variable for safekeeping.

Another way to work around the problem with global variables is to create a wrapper function that
fi rst checks whether the variable has a value. If it does, it merely returns it. If it doesn’t have a value
(which will happen the fi rst time the function is called, or if the value has been reset), the function
then computes or retrieves the value, sets the global variable, and returns the value. This can be a
good way to retrieve or compute values that take some time, such as connection string properties or
other application-wide values that are retrieved from tables. You get the speed of a global variable
and the reliability of computing the values when necessary.

Access 2007 introduced a new way of storing global values: TempVars. This is a collection of values
that you can defi ne and maintain, and it won’t be reset if you stop your code during debugging.
The values are retained as long as the current database is open. TempVars is explained in detail in
Appendix I.

EVALUATING EXPRESSIONS IN VBA

Expressions are one of the basic building blocks of any programming language. There are
several ways to evaluate expressions in VBA that allow you to control the fl ow of your procedural
logic.

If ... Then

Almost every programming language has some way of asking If, and VBA is no exception. The
If..Then structure is one of the most commonly used in VBA. Its usage is straightforward, but
there are a couple of issues that warrant extra attention. First, the expression you are using needs to
be formed correctly and completely. One common mistake is to use an expression like this:

If intOrderStatus = 1 Or 2 Then
 `some interesting code here
End If

The problem here is that a complete Boolean (True or False) expression needs to be on both sides
of the Or. The literal way to interpret this expression is “if intOrderStatus = 1 or if 2 is True, then,”
which, of course, makes no sense. The constant 2 will always evaluate to True. In fact, the only
value that evaluates to False is 0. All other values are True. Internally, Access will store -1 as True,
but any value other than 0 evaluates to True.

c07.indd 185c07.indd 185 7/2/2010 3:39:17 PM7/2/2010 3:39:17 PM

186 x CHAPTER 7 USING VBA IN ACCESS

The correct way to write this line of code is as follows:

If intOrderStatus = 1 Or intOrderStatus = 2 Then
 `some interesting code here
End If

code snippet Correct ‘If…Then’ Syntax in ch07_CodeSnippets.txt

It’s repetitive, but you have to tell VBA exactly what you want to do.

Instead of using multiple Or operators in SQL statements, you can use
a much easier syntax: the In operator. In SQL, the equivalent to
Where OrderStatus = 1 or OrderStatus = 2 is merely Where OrderStatus
In (1,2). That’s much easier to read and understand, and it only gets better the
more values you have to compare.

Checking for Nulls

Another common area of confusion is checking for Null. The following statement is incorrect:

If varCustomerKey = Null Then
 `even more interesting code here
End If

An interesting fact about Null: It is, by defi nition, unknown and undefi ned. A variable containing a
Null can’t “equal” anything, including Null. In this example, the interesting code will never run, no
matter how null the customer key fi eld is.

To check for a Null in a fi eld, you must use the IsNull function, like this:

If IsNull(varCustomerKey) Then
 `even more interesting code here
End If

code snippet Checking For Nulls in ch07_CodeSnippets.txt

The IsNull function is the only way VBA can evaluate a variable or recordset fi eld and determine
if it is Null. The = just can’t do it. By the way, this is true in Access SQL, too — you need to use
IsNull to test for Nulls in the WHERE clauses of queries and recordsets, or you can use the SQL
 specifi c syntax WHERE [FieldName] IS NULL.

Sometimes, you want to check to see if a fi eld is either Null or contains an empty string (also known
as a zero-length string). Empty strings can creep into your tables if you specify Yes to Allow Zero
Length in the fi eld defi nition during table design. To ensure that you are checking for both, use code
such as this:

If IsNull(BusinessName) or BusinessName = `̀ ˝ Then

c07.indd 186c07.indd 186 7/2/2010 3:39:17 PM7/2/2010 3:39:17 PM

Evaluating Expressions in VBA x 187

What a hassle — you have to type the name of the fi eld twice, and the line is confusing to read.
There’s a much easier way:

If BusinessName & `̀ ˝ = `̀ ˝ Then

code snippet Checking For Null Or Empty String -- Two Ways in ch07_CodeSnippets.txt

This technique uses the concatenation behavior of the & operator. The & concatenates two strings,
even if one of them is Null (see the section “String Concatenation Techniques” later in this chapter).
In this case, it concatenates an empty string (̀`˝) onto the end of BusinessName. If BusinessName is
Null, the result is an empty string. If BusinessName has any string value in it, it remains unchanged
by tacking on an empty string. This behavior enables you to quickly check if a fi eld has a Null or an
empty string.

Notice that this example uses the & operator to concatenate strings. The + operator also concat-
enates strings, but there’s an important difference: + propagates Null. That is, if either side (oper-
and) is Null, the result is also Null. Concatenation of strings is discussed in more detail later in this
chapter.

On the subject of Nulls, the nz() function converts a Null value to 0 (zero). It’s built into VBA and
can be helpful in math calculations when you don’t want a Null to wipe out the whole result. For
example, to calculate a price with a discount, you could use this code:

NetPrice = ItemPrice – (ItemPrice * DiscountPercent)

This works fi ne as long as DiscountPercent has a value. If it is Null, the NetPrice will also be set
to Null, which is an error. The following code works correctly:

NetPrice = ItemPrice – (ItemPrice * nz(DiscountPercent))

Now, if DiscountPercent is Null, it is converted to 0 by the NZ function, and the NetPrice will be
set to the full ItemPrice.

The nz() function will accept two parameters separated by a comma. The sec-
ond parameter is optional and allows you to defi ne the replacement value if the
fi rst parameter is null. The syntax is: nz(TestValue, ReplacementValue).
The default replacement value is 0 except when used in a query where the
default value (unless otherwise specifi ed) is an empty string. When specifying the
replacement value it must be treated as text. When using a literal replacement
value, enclose the value in quotes. For example, if you would like to replace a
null fi eld value for a text fi eld with the word “Unknown,” use the following
syntax:

CurrentStatus = nz([StatusField], `̀ Unknown˝)

c07.indd 187c07.indd 187 7/2/2010 3:39:19 PM7/2/2010 3:39:19 PM

188 x CHAPTER 7 USING VBA IN ACCESS

Select Case

Another way to evaluate expressions and run code based on them is the often under-utilized
Select Case structure. It enables you to test for multiple values of a variable in a clean, easy-to-
understand structure, and then run blocks of code depending on those values. Here’s an example of
a Select Case structure:

Select Case intOrderStatus
Case 1, 2
 `fascinating code for status 1 or 2
Case 3
 `riveting code for status 3
Case Else
 `hmm, it’s some other value, just handle it
End Select

code snippet The Select Case in ch07_CodeSnippets.txt

Notice that there is no need for nested and indented If statements, and each Case block of code
doesn’t need a beginning or ending statement. Just to show the difference, the equivalent code using
plain old If statements looks like this:

If intOrderStatus = 1 Or intOrderStatus = 2 Then
 `fascinating code for status 1 or 2
Else
 If intOrderStatus = 3 Then
 `riveting code for status 3
 Else
 `hmm, it’s some other value, just handle it
 End If
Endif

This code is harder to read and understand. If you need to choose among multiple blocks of code
depending on an expression’s value, then Select Case is the preferred method.

USING RECORDSETS

Recordset operations are one of the cornerstones of Access VBA, enabling you to directly read,
update, add, and delete records in Access tables and queries. You explore all of this in the following
sections.

Opening Recordsets

Opening a recordset is easy, using either DAO or ADO (for more details about DAO and ADO, refer
to Chapters 11 and 12). To open a recordset, you fi rst need a reference to the current database, usu-
ally named db, and a recordset object. Here’s how to accomplish that using DAO:

Dim db as DAO.Database
Set db = CurrentDB
Dim rst as DAO.Recordset

c07.indd 188c07.indd 188 7/2/2010 3:39:20 PM7/2/2010 3:39:20 PM

Using Recordsets x 189

Now you need to actually open the recordset. There are three basic ways to open a recordset: by
table, by query, and by SQL statement. Here’s how to use a table directly:

Set rst = db.OpenRecordset(`̀ tblMyTableName˝)

code snippet Opening A Recordset Using An Existing Table Or Query in ch07_CodeSnippets.txt

If you have a query that already has some joined tables, selection criteria, or sort order, you can use
it to open the recordset instead of using a table.

Set rst = db.OpenRecordset(`̀ qryMyQueryName˝)

code snippet Opening A Recordset Using An Existing Table Or Query in ch07_CodeSnippets.txt

Finally, you can open a recordset using your own SQL statement instead of using a preexisting
query. Access evaluates and runs the query string on-the-fl y.

Set rst = db.OpenRecordset(`̀ Select * From tblMyTableName˝)

code snippet Opening A Recordset Using A SQL Statement in ch07_CodeSnippets.txt

Now, you’re probably thinking, “why is that last way any better than opening the table directly?”
Your question is justifi ed in this simple example. But using a recordset based on a SQL statement is
much more fl exible than using a table or query directly because you can modify the SQL statement
in VBA code — like this:

Set rst = db.OpenRecordset(`̀ Select * From tblMyTable Where MyKey = `̀ & Me!MyKey)

code snippet Opening A Recordset Using SQL Statement With Filter in ch07_CodeSnippets.txt

Now you’re seeing some fl exibility. This example opens a recordset limited to only those records
that match the MyKey fi eld on the form that contains this code. You can use values from your open
forms or other recordsets as selection criteria, set fl exible sort fi elds, and so on.

Looping through Recordsets

When your recordset opens, it automatically points to the fi rst record. One of the most
common uses for a recordset is to loop through the records, top to bottom, and perform some
action for each one. The action could be sending an e-mail, copying records across child tables, or
whatever you need to do. Following is some example code to loop through all of the records
in tblBusiness:

Dim db As DAO.Database
Dim rstBusiness As DAO.Recordset

c07.indd 189c07.indd 189 7/2/2010 3:39:20 PM7/2/2010 3:39:20 PM

190 x CHAPTER 7 USING VBA IN ACCESS

Set db = CurrentDb

Set rstBusiness = db.OpenRecordset(`̀ tblBusiness˝)

Do While Not rstBusiness.EOF
 `do some code here with each business
 rstBusiness.MoveNext
Loop

code snippet Looping Through Recordsets in ch07_CodeSnippets.txt

Notice that the EOF (end of fi le) property of the recordset object is True when there are no more
records in the recordset. It begins with a True value if there are no records in the recordset
at all.

Remember to include the .MoveNext method before the Loop statement. If you omit it, your
code drops into an infi nite loop, repeatedly processing the fi rst record, and not moving to the
next one.

Don’t use recordset looping and updating to simply update a group of records in
a table. It is much more effi cient to build an update query with the same selec-
tion criteria to modify the records as a group.

If you need to perform an action on some of the records in a recordset, limit
the recordset using a Where clause when you open it. Avoid testing the records
with If statements inside your loop to determine which record(s) to perform the
action against. It is much more effi cient to exclude them from the recordset to
begin with, rather than ignoring certain records in your loop.

Adding Records

To add a record using a recordset, the recordset type needs to be capable of updates. Most
recordsets for Access (Access Control Entry, or ACE) tables , such as the one previously described,
can be updated. However, if you need an updatable recordset for a SQL Server table opened via
ODBC, you may need to also specify the dbOpenDynaset parameter value for the type. There’s no
harm in specifying it, even if it is an ACE table.

Set rst = db.OpenRecordset(`̀ tblMyTable˝, dbOpenDynaset)

With rst
 .AddNew
 !MyField1 = `̀ A˝
 !MyField2 = `̀ B˝
 .Update

End With

code snippet Adding Records in ch07_CodeSnippets.txt

c07.indd 190c07.indd 190 7/2/2010 3:39:20 PM7/2/2010 3:39:20 PM

Using Recordsets x 191

The .AddNew method of the recordset object instantiates the new record in the table, and if the table
is in ACE, also immediately assigns a new AutoNumber value to the record if the table contains one.
Don’t forget the fi nal .Update, because without it, your record won’t actually be added.

If the table is linked using ODBC (such as SQL Server), the AutoNumber/Identity value is not gen-
erated immediately when the .AddNew method runs. Instead, the Identity value is set after the
.Update. This is discussed in the section “Copying Trees of Parent and Child Records” later in this
chapter.

Finding Records

To fi nd a record in a recordset, use the FindFirst method. This is really just a way to reposition the
current record pointer (cursor) to the fi rst record that meets some criteria you specify. The criteria is
specifi ed like a WHERE clause in a SQL statement, except you omit the word WHERE. It looks like this:

rst.FindFirst `̀ CustomerKey = `̀ & Me!CustomerKey

code snippet Finding Records Using FindFirst in ch07_CodeSnippets.txt

After you perform a FindFirst, you can check the NoMatch property of the recordset to determine
whether you successfully found at least one matching record. You can also use the FindNext,
FindPrevious, and FindLast methods to navigate to other records.

In general, you shouldn’t need to use the Seek method of a recordset. It may be
slightly faster than FindFirst, but it won’t work on a linked table without extra
programming to open the table in a separate Workspace.

Updating Records

The code for updating records in a recordset is almost the same as for adding them. You may also
need to fi nd the correct record to update using FindFirst. If you fi nd it successfully, you can update
it. Here’s an example:

Set rst = db.OpenRecordset(`̀ tblMyTable˝)

With rst
 .FindFirst `̀ CustomerKey = `̀ & Me!CustomerKey
 If Not .NoMatch Then `we found the record

 .Edit
 !CustomerName = `̀ ABC Construction˝
 !CustomerStatus = 1
 .Update

 End If
End With

code snippet Updating Records in ch07_CodeSnippets.txt

c07.indd 191c07.indd 191 7/2/2010 3:39:22 PM7/2/2010 3:39:22 PM

192 x CHAPTER 7 USING VBA IN ACCESS

The With statement is purely a programming convenience. Instead of typing the
name of the object every single time, you can use With <objectname>. After
that, and until you use End With, any references with no object name, just a
dot (.) or bang (!), are assumed to belong to the With object. You may want to
improve the clarity of your code by not using it when you are trying to keep
track of multiple recordsets.

USING MULTIPLE RECORDSETS

You can easily keep track of multiple open recordsets at once. Each one needs to be defi ned with a
Dim statement and opened using the OpenRecordset method, and they are kept completely separate
by Access. Each recordset has its own current record pointer (often called a cursor), end of fi le (EOF)
and beginning of fi le (BOF) values, and so on.

This technique is necessary to perform the following trick: Copy a parent record and all of its child
records into the same tables.

Copying Trees of Parent and Child Records

Here’s a task that can stump an Access programmer trying to tackle it for the fi rst time. The prob-
lem is as follows: There are two tables, tblPC and tblSpecification. Each (parent) PC has many
(child) Specifications. Many PCs have almost identical Specifications, but with slight varia-
tions. You need to write some code to copy one PC to another, along with all of its Specifications.
The user will then manually update the copied PC’s Specifications.

At fi rst, you might think that this seemingly simple problem can be performed using only queries.
However, you soon run into a problem — you need to know the key of the newly copied PC so that
you can assign the copied Specifications to it.

You can solve the problem by using multiple recordsets. Let’s say that you have a continuous form
showing a list of PCs and a Copy button at the bottom of the form. The desired functionality is to
copy the PC record (with `̀ Copy of `̀ as a prefi x of the new PC) and also copy over all of its
Specification records to the new PC:

On Error GoTo Error_Handler
Dim db As Database
Dim rstPC As DAO.Recordset
Dim rstSpecFrom As DAO.Recordset
Dim rstSpecTo As DAO.Recordset
Dim lngPCKey as Long

Set db = CurrentDb

If Not IsNull(Me.PCKey) Then

 Set rstPC = db.OpenRecordset(`̀ tblPC˝, dbOpenDynaset)

 `copy the parent record and remember its key
 rstPC.AddNew
 rstPC!PCName = `̀ Copy of`̀ & Me!PCName

c07.indd 192c07.indd 192 7/2/2010 3:39:23 PM7/2/2010 3:39:23 PM

Using Multiple Recordsets x 193

 rstPC.Update
 rstPC.Bookmark = rstPC.LastModified
 lngPCKey = rstPC!PCKey

 rstPC.Close
 Set rstPC = Nothing

 Set rstSpecTo = db.OpenRecordset(`̀ tblSpecification˝, dbOpenDynaset)
 Set rstSpecFrom = db.OpenRecordset _
 (`̀ Select * From tblSpecification Where PCKey = `̀ & Me!PCKey)

 Do While Not rstSpecFrom.EOF

 rstSpecTo.AddNew
 rstSpecTo!PCKey = lngPCKey `set to the new parent key
 rstSpecTo!SpecificationName = rstSpecFrom!SpecificationName
 rstSpecTo!SpecificationQty = rstSpecFrom!SpecificationQty
 rstSpecTo.Update

 rstSpecFrom.MoveNext
 Loop

 rstSpecTo.Close
 Set rstSpecTo = Nothing
 rstSpecFrom.Close
 Set rstSpecFrom = Nothing

 Me.Requery
End If

Exit_Procedure:
 On Error Resume Next
 Set db = Nothing
 Exit Sub

Error_Handler:
 DisplayUnexpectedError Err.Number, Err.Description
 Resume Exit_Procedure
 Resume

code snippet Copying Trees Of Parent And Child Records in ch07_CodeSnippets.txt

It’s important to understand the following key points about the preceding code:

 ‰ The variable lngPCKey stores the key of the newly created copy of the PC record. It’s defi ned
as a Long because this example assumes you are using AutoNumber keys, which are Long
Integers.

 ‰ To fi nd the record that was just created, you can use the LastModified property of the
recordset. It returns a Bookmark to the record that was added. You can use this to fi nd the
new key.

 ‰ Setting the Bookmark property of a recordset positions it to that record.

 ‰ Use Me.Requery to requery the form’s recordset so that the newly added record will be
shown.

c07.indd 193c07.indd 193 7/2/2010 3:39:24 PM7/2/2010 3:39:24 PM

194 x CHAPTER 7 USING VBA IN ACCESS

If your back-end database is Access (ACE), there’s a simpler way to fi nd the AutoNumber key of a newly
added record. Anywhere between the .AddNew and the .Update, the AutoNumber key fi eld of the table
has already been set, so you can save it into a variable. Using this method, you don’t need the Bookmark
or LastModified properties. But be careful: If your back-end database is SQL Server or another ODBC
database, the key won’t be set until after the .AddNew, and your code won’t work. The technique shown
here is more fl exible because it works for both ACE and ODBC databases.

Some developers are tempted to fi nd the AutoNumber key with the highest value immediately after
adding a record, thinking that this is a good way to fi nd the new record. Don’t do it! There are two
problems with this approach. First, it fails in a multiuser environment if another user just happens
to add a record in the fraction of a second after your code adds a new record but before it fi nds the
“highest” value. Second, you shouldn’t write code that depends on an AutoNumber key to have a
certain value or sequence. If your database is ever switched to random keys (which can happen if it
is replicated), this technique fails.

Using Bookmark and RecordsetClone

In the previous example, there’s one annoying behavior. After the form is requeried, the record selec-
tor is repositioned to the top of the list. That’s disconcerting and can make it diffi cult to fi nd the
record that was just created.

It’s easy to reposition the form to the new record — after all, you already know its key. Just after the
Me.Requery, you add some code to fi nd the new record in the just-requeried recordset and reposi-
tion the form to it.

To reposition the form, you use a RecordsetClone. This is a strange concept to developers when
they fi rst use it. Think of a RecordsetClone as a “twin” of the main recordset that the form is
bound to. The nice thing about a RecordsetClone is that it has its own record cursor (with separate
FindFirst, EOF, and so on), but it uses the exact same set of records as the form. You synchronize
the “twin” recordsets with a Bookmark, which is essentially a pointer to an exact record in both
recordsets.

If you fi nd a record using a form’s RecordsetClone, you can use the Bookmark to instantly reposi-
tion the form to that record. Here’s the same code, with the extra repositioning section:

On Error GoTo Error_Handler
Dim db As Database
Dim rstPC As DAO.Recordset
Dim rstSpecFrom As DAO.Recordset
Dim rstSpecTo As DAO.Recordset
Dim lngPCKey as Long

Set db = CurrentDb

If Not IsNull(Me.PCKey) Then

 Set rstPC = db.OpenRecordset(`̀ tblPC˝, dbOpenDynaset)

 `copy the parent record and remember its key
 rstPC.AddNew
 rstPC!PCName = `̀ Copy of `̀ & Me!PCName
 rstPC.Update

c07.indd 194c07.indd 194 7/2/2010 3:39:24 PM7/2/2010 3:39:24 PM

Using Multiple Recordsets x 195

 rstPC.Bookmark = rstPC.LastModified
 lngPCKey = rstPC!PCKey

 rstPC.Close
 Set rstPC = Nothing

 Set rstSpecTo = db.OpenRecordset(`̀ tblSpecification˝, dbOpenDynaset)
 Set rstSpecFrom = db.OpenRecordset _
 (`̀ Select * From tblSpecification Where PCKey = `̀ & Me!PCKey)

 Do While Not rstSpecFrom.EOF

 rstSpecTo.AddNew
 rstSpecTo!PCKey = lngPCKey `set to the new parent key
 rstSpecTo!SpecificationName = rstSpecFrom!SpecificationName
 rstSpecTo!SpecificationQty = rstSpecFrom!SpecificationQty
 rstSpecTo.Update

 rstSpecFrom.MoveNext
 Loop

 rstSpecTo.Close
 Set rstSpecTo = Nothing
 rstSpecFrom.Close
 Set rstSpecFrom = Nothing

 Me.Requery

 `reposition form to new record
 Set rstPC = Me.RecordsetClone
 rstPC.FindFirst `̀ PCKey = `̀ & lngPCKey
 If Not rstPC.EOF Then
 Me.Bookmark = rstPC.Bookmark
 End If
 rstPC.Close
 Set rstPC = Nothing

End If

Exit_Procedure:
 On Error Resume Next
 Set db = Nothing
 Exit Sub

Error_Handler:
 DisplayUnexpectedError Err.Number, Err.Description
 Resume Exit_Procedure
 Resume

code snippet Using Bookmark And RecordsetClone in ch07_CodeSnippets.txt

You can reuse the rstPC recordset object for the repositioning logic because you are fi nished using
it from earlier in the code, it has already been dimensioned, and it has an appropriate name. Of
course, you need to close it and set it to Nothing again when you’re done.

Cleaning Up

Although Access VBA is supposed to automatically clean up local objects when a procedure ends,
there is a history of errors and exceptions to this. So, programmers have learned that the safest

c07.indd 195c07.indd 195 7/2/2010 3:39:24 PM7/2/2010 3:39:24 PM

196 x CHAPTER 7 USING VBA IN ACCESS

practice is to clean up everything themselves. It’s boring, but it shows an attention to detail that is
missing in many novice applications. To clean up recordsets, make sure that you:

 ‰ Close the recordset using the .Close method.

 ‰ Release the recordset object by setting it to Nothing.

These two easy steps may prevent strange problems and, more importantly, help you gain the respect
of your peers.

USING VBA IN FORMS AND REPORTS

Much of the power and fl exibility of applications built using Access comes from the VBA code that
you can use behind your forms and reports. Although code-less forms and reports can provide a lot
of good functionality, they really shine when VBA coding techniques are added.

Access wizards provide a fi rst look at VBA code behind forms and reports. However, wizard-built
code is just scratching the surface. The following sub-sections offer some guidelines and techniques
that will help you build extra functionality into your Access applications.

All about Me

Me is a very special word in Access VBA. It is a reference to the form or report that your code is run-
ning in. For example, if you have some code behind the form frmBusiness, anytime you use Me in
that code, you get a reference to the form object of frmBusiness.

This is a beautiful thing because there are many times that you need a reference to your own form
or report, such as when you need to make it visible. You could refer to it directly, like this:

Forms!frmBusiness.Visible = True

Or, you can use the Me reference instead:

Me.Visible = True

Obviously, the Me reference is much shorter and easier to type. But there is a far greater reason to use
Me: It enables you to move code from one form or report to another, where it automatically adapts to
its new home.

The Me object is a full reference to a form object. Not only can you refer to it, but you can also pass
it to other functions as a parameter. Simply defi ne a function with a parameter with a Form data
type, and you can pass the Me reference to it. You can see that used in the Better Record Finder tech-
nique shown in Appendix I.

It’s good that you can pass Me as a parameter because it doesn’t work outside the code of the form
or report. Remember that Me refers to the form or report that it lives in, not the form or report that
is currently active. So Me will not work in a standalone module (a module not behind a form or
report).

c07.indd 196c07.indd 196 7/2/2010 3:39:24 PM7/2/2010 3:39:24 PM

Using VBA in Forms and Reports x 197

Referring to Controls

A control is any object that is placed on a form or report, such as a label, text box, combo box,
image, checkbox, and so on. To refer to a control (for example, a bound text box named
BusinessName) from the code behind a form or report, you use the following:

Me!BusinessName

So, if you want to clear out the BusinessName control, you use the following:

Me!BusinessName = Null

There has long been confusion in the VBA world about when to use a ! (bang) and when to use a
. (dot). There are more technical ways to describe it, but for the average VBA programmer there’s a
quick rule that works most of the time: If you (or any programmer) named it, you can use a bang. If
Access named it, you use a dot. (Now, before all the VBA experts reading this get upset, please real-
ize that it’s only a general guideline. However, it does help.)

With that said, here’s an exception. In the last few versions of Access, you can use either a bang or
a dot when referring to controls on forms or reports, even though you named them. That’s because
of a little trick Access does: It turns all of your controls into properties of the form or report so they
can be referred to with dots. This has a handy benefi t: Access uses IntelliSense to prompt you with
the possible properties and methods that are available for an object. So, in the Me!BusinessName,
for example, you type Me and then . (dot); Access can then prompt you with every method and
property for the object Me, including your control BusinessName.

That little trick about using a dot instead of a bang for controls on forms
and reports does not extend to fi elds in a recordset. To refer to them directly,
you still need to use a bang, like this: rstMyRecordset!BusinessName. Or
you can use other ways, such as the Fields collection: rstMyRecordset
.Fields(`̀ BusinessName˝). It is for that reason you should ensure that your
control names are not the same as your fi eld names. By default, a control bound
to a fi eld assumes the name of the fi eld. A good programming practice is to
immediately rename these controls using a Reddick naming convention prefi x
(txt for Text Box, cbo for combo box, and so on, depending on the type of con-
trol being used).

Referring to Subforms and Subreports

One of the most common questions about subforms and subreports is how to refer to their controls
from the main form or report. Let’s say that you have a form named frmBusiness, and on it you
have a continuous subform named fsubPayments. Each Business record may have many Payments.
You need to refer to a value of the calculated control txtSumPaymentAmount on the subform,
but you want to do it from the main form frmBusiness.

c07.indd 197c07.indd 197 7/2/2010 3:39:25 PM7/2/2010 3:39:25 PM

198 x CHAPTER 7 USING VBA IN ACCESS

The correct way to refer to txtSumPaymentAmount from frmBusiness is:

Me!fsubPayments.Form!txtSumPaymentAmount

The following table shows what each of the parts refers to:

COMPONENT DESCRIPTION

Me The parent form where the code is running, which in this

example is frmBusiness.

!fsubPayments The control that contains the subform (its name usually

defaults to the name of the subform object itself, but some

programmers rename it).

.Form This is the tricky piece. You need to drill down into the form

that’s in the control because that’s where the controls in the

subform live. The control on the main form named

fsubPayments is just a Container — it doesn’t contain the

control you’re looking for, but it does have this Form refer-

ence to use to get down into the subform itself.

!txtSumPaymentAmount The control you want. You can even refer to controls that are

on subforms on subforms (two levels down).

Remember that you need to use the Form reference to get into the form that’s in the subform control
Container. For example, frmAcontains subform fsubB contains subform fsubC, which has control
txtC. The full reference looks like this:

Me!fsubB.Form!fsubC.Form!txtC

You can also shift into reverse and refer to controls above a subform, using the Parent property. If
some code in fsubC (at the bottom) needed to refer to control txtA on frmA (at the top), it would
look like this:

Me.Parent.Parent!txtA

Note that you don’t need the Form reference here because the Parent reference is already a Form
reference.

Closing Forms

Most of us will use the built-in Access wizards when creating certain types of buttons — one for
closing your forms, for example. When you do, Access will create an Embedded Macro to perform
this action. Often, you may not wish to use the macro but would like to use code so that you can
run certain types of data validation or other operations before the form closes. While you could
allow Access to convert the form’s macros to code for you, you may just want to create the code
yourself from scratch. The basic way to do that is with the following code:

DoCmd.Close

This method of the DoCmd object closes the active object, like your form. It doesn’t get much sim-
pler than that. Unfortunately, there is an obscure situation that will cause this code to fail to close
the correct form. If you read the help documentation on DoCmd.Close, you’ll see that if you don’t

c07.indd 198c07.indd 198 7/2/2010 3:39:25 PM7/2/2010 3:39:25 PM

Debugging VBA x 199

provide any parameters, it closes the active form. You might assume that the active form is the one
containing this code; after all, you just clicked the Close button, so the form must be active. How-
ever, there are situations where another form is the active one.

You may, for example, have a hidden form on a timer that periodically does something. This is a
technique that is often used in automatic log-off functionality, where a hidden form uses a timer to
periodically check a table to determine whether it should shut down the application. The problem
is that, when that timer fi res and the code in the form checks the table, it becomes the active form.
If you’re unlucky enough for that to happen right when the Close button is clicked, the wrong form
(the hidden one) will close instead of the form you intended.

Another situation is when the code in your closing routine reaches out and runs code in another
form; this can make the other form active at that moment. The solution is to clarify the DoCmd
.Close statement, like this:

DoCmd.Close ObjectType:=acForm, ObjectName:=Me.Name

This specifi es that a form be closed, specifi cally the form to which this code belongs. If you get into
the habit of using this syntax, the proper form will always close correctly.

DEBUGGING VBA

Programming in VBA isn’t easy. No matter how
skilled you are there are times when you need help fi g-
uring out what the code is actually doing. Fortunately,
VBA provides a rich and powerful debugging environ-
ment. You can stop the code at various times and for
various reasons, view values of variables (and even
change them), and step through your code line-by-
line until you understand what’s going on.

The main reason you need to debug your code
is that Access has displayed an error message.
(Hopefully you’ve put error handling in your
code, which can make this activity easier.)
Let’s say you’ve coded a cool copy routine like
the one shown earlier in this chapter. However,
when you try it, Access displays an error. If
you don’t have error handling, a message box
displays, as shown in Figure 7-2.

If you do have error handling, good job!
Your error handling message box will
display, as shown in Figure 7-3.

When Access displays your handled error message box,
your code execution is suspended. To debug your code,
press Ctrl+Break to interrupt code execution
and display the dialog box shown in Figure 7-4.

FIGURE 7-2

FIGURE 7-3

FIGURE 7-4

c07.indd 199c07.indd 199 7/2/2010 3:39:26 PM7/2/2010 3:39:26 PM

200 x CHAPTER 7 USING VBA IN ACCESS

Whichever way you get there, you can fi nally click the Debug button. When you do, your code
appears in the VBA code window. If you are not using error handling, the line of code that caused
the error is indicated by an arrow and highlighted in yellow. If you are using error handling with
the centralized Msgbox text and an extra Resume statement detailed later in this chapter, press F8 to
step back to the procedure that contains the error. Then you can reposition to the specifi c line that
caused the error, as shown in Figure 7-5.

FIGURE 7-5

INVESTIGATING VARIABLES

Now that you can see your code and the line that might be causing the problem, it’s time to inves-
tigate. The error message — Object variable or With block variable not set — is a clue,
but it doesn’t tell you exactly what the problem is. The fi rst step is to check the current values of
the variables near the line that caused the error. Remember that your code is suspended, so all your
variables are intact and able to report their values.

The quickest and easiest way to determine the value of a variable is to hover your mouse pointer
over the variable name in the code window when your code is suspended. If the variable is part of
a longer phrase, however, hovering may not work. For example, the variable Me.BusinessKey is
simple enough to be “hoverable” (see Figure 7-6).

Because BusinessKey has a reasonable value, it doesn’t seem to be the problem. To check variables
or objects that are part of a more complex statement, highlight the portion you are interested in
before you hover over it. In this example, just hovering over the object name db doesn’t display any-
thing, but after selecting db, hovering provides a value, as shown in Figure 7-7.

c07.indd 200c07.indd 200 7/2/2010 3:39:26 PM7/2/2010 3:39:26 PM

Investigating Variables x 201

FIGURE 7-6

FIGURE 7-7

c07.indd 201c07.indd 201 7/2/2010 3:39:26 PM7/2/2010 3:39:26 PM

202 x CHAPTER 7 USING VBA IN ACCESS

By checking the value of db, you can see that it is currently set to Nothing. This is Access’s way
of telling you that the db object reference hasn’t been set to any value yet. Sure enough, when you
look at the code, you can see that although you defi ned db using the line Dim db As Database, you
forgot to include the line Set db = CurrentDb. Adding this line before the OpenRecordset line
resolves the problem.

When Hovering Isn’t Enough — Using the Immediate Window

There are times when having the value of a variable pop up by hovering over it isn’t suffi cient. Per-
haps the value doesn’t fi t in the pop-up, or maybe you need to copy the value to use it somewhere
else. Or maybe you just want to look at it longer than the limited time the pop-up value displays. In
those cases, you can use the Immediate window (instead of hovering) to view variable values.

If the Immediate window isn’t already displayed, select View Í Immediate Window or press Ctrl+G
to open it. Then you can ask Access to display the value of a variable using ?, like this:

?Me.BusinessKey

When you press Enter, Access returns the value:

?Me.BusinessKey

949

The ? in the Immediate window is just a quick way of specifying Debug.Print.

No matter how long this value is (it could be a very long string, for example), Access displays it
here so that you can study it or even copy it into the clipboard to use somewhere else. This comes
in handy when the variable contains a long SQL string that you want to try out by pasting it into a
new query.

Setting Breakpoints

Sometimes your code doesn’t actually produce an error, but it still doesn’t work correctly. In those
cases, you need to stop the code yourself using breakpoints.

The easiest way to set a breakpoint is to click the gray area to the left of a line of code where you
would like the code to suspend execution. This places a red dot to remind you where the breakpoint
is set. Just before that line runs, your code will suspend and the code window will be displayed with
that line highlighted in yellow, as shown in Figure 7-8.

At this point, you can investigate variable values as discussed previously in this chapter.

Setting Watch Values

Sometimes you have no clue where the problem lies, so you don’t know where to set the breakpoint.
However, you may want to suspend your code and investigate whenever a certain variable is set to a
certain value. To do this, you can use a watch value.

c07.indd 202c07.indd 202 7/2/2010 3:39:27 PM7/2/2010 3:39:27 PM

Investigating Variables x 203

FIGURE 7-8

A watch value enables you to suspend execution of
your code whenever a variable or object (or expres-
sion using a variable or object) changes or has a cer-
tain value. This is especially powerful in complex
code scenarios where you are having trouble fi nding
where your logic is going wrong. You create watch
values using the Add Watch window (see Figure 7-9),
which you can request using Debug...Add Watch or
by right-clicking in the Watches window.

You can watch a single fi eld, or you can type in an
expression that uses multiple variables or values.
Also, you can widen the context; it defaults to the
procedure you are in, but you can expand on this to
include all procedures. Finally, you can choose to merely watch the expression, to break (suspend
your code execution) when the expression becomes True (for example, when BusinessKey = 949),
or to break every time your expression changes. After you add your watch, it appears in the Watches
window, as shown in Figure 7-10.

When the break condition you specify occurs, your code is displayed in the window. However, now
you have an additional window, the Watches window. You can add more watch expressions here, if
needed, and if you specify an object to watch (such as a form, report, recordset, and so on), you can
even drill down to all of its properties using the plus sign (+) next to the object name.

FIGURE 7-9

c07.indd 203c07.indd 203 7/2/2010 3:39:28 PM7/2/2010 3:39:28 PM

204 x CHAPTER 7 USING VBA IN ACCESS

FIGURE 7-10

Stopping Runaway Code

Everyone has done it. Every developer has created code that created an infi nite loop. That’s where
your Access application just freezes, consuming all available computer power while it runs around
the little race track that you accidentally created.

To stop your code in mid-execution, press Ctrl+Break. This suspends your code and drops you into
the code window on whatever line that happens to be executing at that moment.

Stepping through Your Code

Sometimes the only way to fi gure out a problem in your code is to actually run it line-by-line until
you see where it goes wrong. You can use any of the preceding methods to stop your code, but there’s
nothing like getting your mind right into the logic by stepping through the code one line at a time.

You step through code by selecting Debug Í Step Into (or pressing F8). This debug command is the
most common one to use because it’s so basic. It runs the line of code that is highlighted, displays
the next line that will be run, and awaits your next command. The Step Into and other Step com-
mands are shown in Figure 7-11.

Sometimes the basic nature of Step Into is a problem. If the highlighted line of code is a call to
another procedure (either a function or a sub), Step Into will do just that — it will dive into that
procedure and highlight its fi rst line.

c07.indd 204c07.indd 204 7/2/2010 3:39:28 PM7/2/2010 3:39:28 PM

Investigating Variables x 205

FIGURE 7-11

Now, maybe that’s just what you want. But if you are following good programming practices, such
as the coupling and cohesion guidelines presented earlier in this chapter, you have lots of small,
fully tested functions that will be supremely boring and laborious to step through. After all, you
know the error isn’t in one of those, right?

The answer to this little problem is to use a cousin of Step Into called Step Over (Shift+F8).
Its name isn’t quite accurate, because when you use it, the highlighted line of code isn’t really
stepped over — it’s actually stepped through. The line of code that’s highlighted will run, even
if it is a call to one of your functions or subs, and then the next line will be highlighted.
The entire function or sub will run without stopping, so you don’t have to step through all that
boring code.

Also note that Step Over works exactly the same as Step Into for a normal line of code
(not a call to another procedure). This means that you can get into the habit of leaning on the
Shift key when you use F8, and you’ll never need to step through called procedures unless you
want to.

What if you accidentally use Step Into when you meant to use Step Over? Hope is not lost.
By using the often-forgotten Step Out (Ctrl+Shift+F8), you can run the remainder of the current
procedure without stopping, and automatically stop on the next line after your code returns to
the calling procedure.

c07.indd 205c07.indd 205 7/2/2010 3:39:28 PM7/2/2010 3:39:28 PM

206 x CHAPTER 7 USING VBA IN ACCESS

COMMON VBA TECHNIQUES

Every Access developer will face some common VBA challenges at some point. There are simple and
easy ways to handle drilling down to detail records, date math, rounding issues, and tricky string
concatenation problems.

Drilling Down with Double-Click

It’s a good design practice to use read-only continuous forms to display multiple records and then
allow your user to drill down to the detail of a single selected record. This action should have a
button at the bottom of the form (called Detail, for example) that opens the detail form for the cur-
rently selected record.

For convenience and to compliment Windows standard behavior, it’s also good to allow the user to
drill down using double-click. Because you already have code behind the Detail button that opens
the detail form, you can easily reuse that code:

Private Sub cmdDetail_Click()
On Error GoTo Error_Handler
 Dim stLinkCriteria As String
 If IsNull(Me!BusinessKey) Then
 EnableDisableControls
 GoTo Exit_Procedure
 End If

 gstrCallingForm = Me.Name
 stLinkCriteria = `̀ [BusinessKey]= ˝ & Me![BusinessKey]
 DoCmd.OpenForm FormName:=˝frmBusiness˝, _
 wherecondition:=stLinkCriteria
 Me.Visible = False

Exit_Procedure:
 On Error Resume Next
 Exit Sub
Error_Handler:
 DisplayUnexpectedError Err.Number, Err.Description
 Resume Exit_Procedure
 Resume

End Sub

code snippet Drilling Down With Double-Click in ch07_CodeSnippets.txt

Because this code is already written and tested, you only need to call it by name (cmdDetail_Click)
when the user double-clicks a record. This is quite simple to do: You just add a double-click event to
each text box on your detail form and add one line of code to each double-click procedure:

Private Sub txtBusinessName_DblClick(Cancel As Integer)
On Error GoTo Error_Handler

 cmdDetail_Click

Exit_Procedure:
 On Error Resume Next
 Exit Sub

c07.indd 206c07.indd 206 7/2/2010 3:39:29 PM7/2/2010 3:39:29 PM

Common VBA Techniques x 207

Error_Handler:
 DisplayUnexpectedError Err.Number, Err.Description
 Resume Exit_Procedure
 Resume
End Sub

code snippet Calling Code In Another Procedure in ch07_CodeSnippets.txt

Here’s a case where your actual code (1 line) is a lot shorter than all the error handling, but that line
allows you to reuse the code you already have behind the Detail button.

Just because Access creates and names an event procedure (cmdDetail_Click in this case) doesn’t
mean you can’t use it yourself. Just call it by typing its name as a statement in VBA.

To support double-click all the way across your row, you need to add the same code to each fi eld’s
Double-Click event. That way, whichever fi eld your user double-clicks, they’ll drill down to the
detail record.

Now, there’s only one more thing to add. Users will often double-click the Record Selector itself
(the arrow to the left of the current record) when they want to drill down to the record’s detail. Sur-
prisingly, the event that fi res in this case is not related to the detail section of the continuous form;
instead, the Form’s double-click event will fi re. To support double-click of the Record Selector, you
can use this code behind the Form’s On Double Click event:

Private Sub Form_DblClick(Cancel As Integer)
On Error GoTo Error_Handler

 cmdDetail_Click

Exit_Procedure:
 On Error Resume Next
 Exit Sub

Error_Handler:
 DisplayUnexpectedError Err.Number, Err.Description
 Resume Exit_Procedure
 Resume
End Sub

Date Handling

The way Access stores and manipulates dates can be a source of confusion to developers, especially
those who remember the older database methods of storing days, months, and years in date fi elds.
Access handles dates in an elegant, easy-to-use manner.

How Access Stores Dates and Times

Access stores a particular date as the number of days that have elapsed since an arbitrary start-
ing “zero date” (December 30, 1899). You can prove this to yourself by typing the following in the
Immediate window (you can bring up the Immediate window in Access using Ctrl+G).

?CLng(#12/31/1899#)
1

c07.indd 207c07.indd 207 7/2/2010 3:39:29 PM7/2/2010 3:39:29 PM

208 x CHAPTER 7 USING VBA IN ACCESS

The CLng function converts an expression to a Long Integer. To this question, Access will answer
with 1, meaning that 1 day elapsed since December 30, 1899. Of course, Access can handle dates
before this date; they’re stored as negative integers. If you want to see how many days have elapsed
since that special zero date, try this:

?CLng(Date)

Access can perform date math very easily because internally it doesn’t store a date as days,
months, and years. It just stores the number of days since the zero date and converts that value
to an understandable date format only when the date needs to be displayed. But the date storage
technique that Access uses goes even farther. Access can also store the time of day in the same
date fi eld. To do this, Access uses the decimal portion (the numbers after the decimal point) to
store a fraction of a day. For example, 12:00 noon is stored as .5 (half way through the day), and
6 a.m. is stored as .25. Again, you can see this for yourself by typing this into the Immediate
window:

?CDbl(Now)

There are a couple of things to note here. The fi rst is that you now need to use CDbl (Convert
to Double Precision Number) so that you can see the decimal portion (the time portion) that is
returned by the Now function. The other is that each time you run this command, you’ll see that the
decimal portion changes because time is elapsing.

When you’re storing the current date in a table, be sure to use the Date function.
If you use Now, you’ll also get a time component, which may cause incorrect
results when you use dates in your query criteria. For example, if your query
selects records where a date fi eld is <=4/28/2007, then any records with a date of
4/28/2007 should be returned. However, if they were stored with a decimal time
component (by using Now instead of Date), the value will be fractionally greater
than 4/28/2007 and that date won’t be returned.

Simple Date Math

To add or subtract calendar time from a date fi eld, use the DateAdd function. For example, to add
1 month to today’s date, use:

?dateadd(`̀ m˝,1,Date)

To subtract, use a negative number for the second parameter, Number. You can use different
units of calendar time for the Interval parameter, such as `̀ d˝ for days, `̀ ww˝ for weeks, `̀ q˝
for quarters, and so on. Be careful when adding or subtracting years; you have to use `̀ yyyy˝,
not just `̀ y˝. The interval of `̀ y˝ is day of year, which acts just like day in the DateAdd
function.

Here’s an example of date math. It computes the last day of a month by fi nding the fi rst day of the
next month, and then subtracting 1 day.

c07.indd 208c07.indd 208 7/2/2010 3:39:29 PM7/2/2010 3:39:29 PM

Common VBA Techniques x 209

Public Function LastDateofMonth(StartDate As Date)

On Error GoTo Error_Handler

 Dim dtNextMonth As Date
 Dim dtNewDate As Date

 `add a month to the start date
 dtNextMonth = DateAdd(`̀ m˝, 1, StartDate)

 `build a date
 dtNewDate = CDate((DatePart(`̀ m˝, dtNextMonth)) & _
 `̀ /01/`̀ & (DatePart(`̀ yyyy˝, dtNextMonth)))

 `subtract a day
 LastDateofMonth = dtNewDate -1

Exit_Procedure:
 Exit Function
Error_Handler:
 DisplayUnexpectedError Err.Number, Err.Description
 Resume Exit_Procedure
 Resume

End Function

code snippet Function To Find Last Date Of Month in ch07_CodeSnippets.txt

Note the use of CDate, which converts any expression that can be interpreted as a date into an
actual date data type. You can use IsDate to check whether an expression can be interpreted as a
date. Also note how the DatePart function is used to break up a date into string components for
Month, Year, and so on.

Handling Rounding Issues

Rounding problems are among the most diffi cult to understand and debug. They usually occur when
adding up money values, but they can also happen in any math where a series of values is expected
to add up correctly.

Rounding of Sums

One basic issue is not Access-related at all, but rather an issue whenever you add up a list of rounded
numbers. For example, take a list of numbers that each represent one third of a dollar. If you add
them up, you’ll get 99 cents because the value of each portion (.33333333...) was truncated to .33.

.33

.33

.33

.99

A common place for this to show up is in a list of percentages that are supposed to total 100 percent.
They often don’t because some precision was lost in the list. Then, you are faced with a deci-
sion — add up the actual numbers and show a total that’s not 100, or just hard-code 100 percent
so that it looks right. Most of the time, you will want to ensure that your fi nal value is correct and
eliminate an accumulated rounding error. This can be accomplished by eliminating rounding of the

c07.indd 209c07.indd 209 7/2/2010 3:39:30 PM7/2/2010 3:39:30 PM

210 x CHAPTER 7 USING VBA IN ACCESS

individual components of your formula and reserving rounding to the fi nal outcome. For display
purposes, each component can be formatted in the displayed control to the number of decimal
places you wish to show but the underlying control will still contain the full value it represents.

Rounding Errors Caused by Floating Point Numbers

Another kind of rounding error comes from the way Access stores numbers in fl oating-point fi elds.
These fi elds cannot store certain numbers without losing some precision, so totals based on them
may be slightly wrong. The best way to avoid this kind of rounding error is to use the Currency
data type for fi elds when they need to hold money values (as you might expect), or the Decimal type
for any other numeric values that you want to use in calculations. The Currency data type is some-
what misnamed; it really can hold any decimal value.

Access uses the word “Currency” for both a data type and a format. This is
unfortunate because they really are two different things. The Currency data
type is a method of storing the numeric values in a table. The Currency format
affects only the display of numeric data. The two can be used independently or
together.

Access Rounding Functions

Access has a built-in function (Round) to round numbers, but it may not work the way you expect.
Most people think that any decimal ending in 5 should round up to the next higher number.
However, Access uses a form of scientifi c rounding that works like this:

 ‰ If the digit to be rounded is 0 through 4, round down to the lower number.

 ‰ If the digit to be rounded is 6 through 9, round up to the higher number.

 ‰ If the digit to be rounded is 5, round up if digit to the left is odd, and round down if the digit
to the left is even.

This last rule is what surprises a lot of developers. Using this rule, Round gives the following
results:

?round(1.5)
2
?round(2.5)
2

Yes, that’s right. Both 1.5 and 2.5 round to 2 using the built-in Round function in Access VBA,
because 1 is odd (round up) and 2 is even (round down). Here’s another example:

?round(1.545,2)

1.54
?round(1.555,2)

1.56

c07.indd 210c07.indd 210 7/2/2010 3:39:30 PM7/2/2010 3:39:30 PM

String Concatenation Techniques x 211

In this example, .545 rounds down, but .555 rounds up, for the same reason. Because this can cause
some trouble in business applications, developers have taken to writing their own rounding func-
tions that behave the way business people expect. Here’s an example of a function that rounds a
trailing 5 upward to a specifi ed number of decimal places:

Public Function RoundCurr(OriginalValue As Currency, Optional _
NumberOfDecimals As Integer) As Currency
On Error GoTo Error_Handler

`returns a currency value rounded to the specified number of decimals of
`the Original Value

If IsMissing(NumberOfDecimals) Then
 NumberOfDecimals = 0
End If

RoundCurr = Int((OriginalValue * (10 ^ NumberOfDecimals)) + 0.5) _
 / (10 ^ NumberOfDecimals)

Exit_Procedure:
 Exit Function
Error_Handler:
 DisplayUnexpectedError Err.Number, Err.Description
 Resume Exit_Procedure

End Function

code snippet Substitute Rounding Function in ch07_CodeSnippets.txt

This function can be placed in any module in your application and used whenever you want the
business-style rounding that most users expect. Note that if you don’t specify the number of deci-
mals you would like, the function will assume that you want none and will return a whole number.

STRING CONCATENATION TECHNIQUES

Sooner or later, you’ll need to join (concatenate) two strings together. The operator for performing
concatenation is &. You may be tempted to say “and” when you see this symbol, but it really means
“concatenate with.” A classic example is joining First Name with Last Name, like this:

strFullName = FirstName & `̀ ˝ & LastName

This results in the fi rst name and last name together in one string, as in “Tom Smith.”

The Diff erence between & and +

There are times when you may need to concatenate something to a string, but only if the string actu-
ally has a value. For example, you may want to include the middle initial in a person’s full name. If
you write code like this:

strFullName = FirstName & `̀ ˝ & MiddleInitial & `̀ ˝ & LastName

you will have a small problem. People with no middle name (Null in the table) will have two spaces
between their fi rst and last names, like this:

Tom Smith

c07.indd 211c07.indd 211 7/2/2010 3:39:30 PM7/2/2010 3:39:30 PM

212 x CHAPTER 7 USING VBA IN ACCESS

Fortunately, there is another concatenation operator: +. The technical explanation of this operator
is “concatenation with Null propagation.” That’s a great phrase to impress your friends with at
parties, but an easier explanation is that it concatenates two strings just as the & operator does, but
only if both strings have a value. If either one is Null, the result of the whole concatenation opera-
tion is Null.

Using the FullName example, the goal is to have only one space separating fi rst and last names if
there is no middle initial. Using +, you can tack on the extra space only if the middlenName is not
null:

MiddleName + `̀ `̀

The whole thing looks like this:

strFullName = FirstName & `̀ ˝ & (MiddleInitial + `̀ `̀) & LastName

As shown, you can use parentheses to ensure that the operations happen in the correct order. In
this case, the inner phrase — (MiddleInitial + `̀ `̀) — will evaluate to the middle initial plus a
space, or to Null (if there is no middle initial). Then, the rest of the statement will be performed.

String Concatenation Example

Here is another example that you can use in your code. It concatenates the city, state, postal code
(ZIP Code), and nation into one text fi eld. This can be handy if you want to show a simulation of an
address label on a form or report.

Function CityStZIPNat(City As Variant, State As Variant, ZIP As Variant, _
 Nation As Variant) As Variant
On Error GoTo Error_Handler

CityStZIPNat = City & (`̀ , `̀ + State) & (`̀ `̀ + ZIP) & _
(IIf(Nation = `̀ US˝ Or Nation = `̀ CA˝, Null, (`̀ `̀ + Nation)))

Exit_Procedure:
 Exit Function
Error_Handler:
 MsgBox Err.Number & `̀ , `̀ & Err.Description
 Resume Exit_Procedure
 Resume

End Function

code snippet String Concatenation Function in ch07_CodeSnippets.txt

You can try it out by calling it in the Immediate window like this:

?CityStZIPNat(`̀ Seattle˝, `̀ WA˝, `̀ 98011˝, `̀ US˝)

Seattle, WA 98011

Notice that this code also tacks on the Nation at the end of the string, but only if it isn’t US or CA
(the ISO standard nation codes for USA and Canada, respectively). This enables you to use this
function for both domestic and foreign addresses.

c07.indd 212c07.indd 212 7/2/2010 3:39:31 PM7/2/2010 3:39:31 PM

VBA Error Handling x 213

VBA ERROR HANDLING

When programmers use the term “error handling,” they really mean graceful or planned error
handling. After all, Access takes some kind of action for any error that it encounters in your code.
Graceful error handling includes the following:

 ‰ Quietly absorbing expected errors so the user never sees them

 ‰ Displaying a “friendly” message to the user for unexpected errors, and closing the procedure
properly

Error handling in Access VBA involves adding code to every procedure — both subroutines and
functions — to take specifi c actions when Access encounters an error. This is called handling or
trapping the error. (Some developers call the encounter with an error: throwing an error. Error han-
dling is the code that catches the error and handles it properly, either by hiding it from the users or
by explaining it to them.)

This section provides techniques to handle several types of expected and unexpected errors so that
your applications look and feel more professional to your users. But fi rst, you’ll explore why you
should use error handling at all. Many Access developers see it as a mundane chore, but there are
good reasons for including error handling in every procedure you write.

Why Use Error Handling?

Without error-handling code, Access treats all errors equally, displaying unfriendly or vague error
messages and abruptly ending procedures. Even worse, if you are using the runtime mode of Access,
the entire application closes. This is not what you want users to experience.

Figure 7-12 shows an example of an error message that
Access displays if you attempt to divide a number by
zero in your application. Sure, technically it indicates
what happened, but what is the user supposed to do
about it? And what if he clicks the Debug button? If
he’s running an MDB/ACCDB instead of an MDE/
ACCDE, he’ll be looking at your code!

When Access encounters an error, it abruptly ends the
procedure. It does not run another line of code; it just
terminates the function or sub that contains the error.
So, it can often leave things hanging — open objects, open forms, the mouse pointer in hourglass
mode, warnings turned off, and so on.

Amateur or pro? When your code is being evaluated by another programmer,
one of the easiest things for him to check is whether you have proper error han-
dling. No matter how good your code is, without error handling you may look
like a beginner. It’s worth making sure that every procedure has error handling.

FIGURE 7-12

c07.indd 213c07.indd 213 7/2/2010 3:39:31 PM7/2/2010 3:39:31 PM

214 x CHAPTER 7 USING VBA IN ACCESS

Now for the good news: Error handling isn’t diffi cult. By using some easy techniques and code tem-
plates, you can make sure that your application never suffers an unhandled error. If you establish a
standard way to handle errors, you can make it easy to implement in every procedure you write.
It may not be fun or glamorous, but it will certainly make your application better.

Two Kinds of Errors: Unexpected and Expected

All errors that your Access application may encounter fall into one of two categories: unexpected
and expected. The following sections explain these two categories and what your application should
do when errors occur in each of them.

Handling Unexpected Errors

Unexpected errors are ones that you have no way of predicting, and that under normal circum-
stances should not occur. When your application encounters an unexpected error (for example,
divide by zero or a missing object), and no error handling is in effect, Access displays an error mes-
sage like the one shown earlier and abruptly ends the procedure.

The goal of error handling in this case is
not to solve the problem the error is indicat-
ing — there’s nothing you can do about that
now. Your code has tripped on an error and
fallen down. The only thing you can do is let
the user know what happened calmly and in
plain language. Figure 7-13 is an example of
what your error message might look like.

There are several differences between the error
message Access shows and the “handled” error
message you can show:

 ‰ You can specify the title of the message box instead of displaying “Microsoft Visual Basic”
or “Microsoft Access.”

 ‰ You can show an icon to have a stronger impact.

 ‰ You can add a text explanation. You can even mention your phone number or other contact
information.

 ‰ You can format the error message with blank lines, commas, and so on.

 ‰ Your user can’t enter debug mode and look at your code.

Absorbing Expected Errors

Some errors can be expected during normal operation. One such error happens in your application
whenever the On Open event of a report is canceled. This occurs when you display a form to prompt
the user for selection criteria during the On Open event, and the user decides to cancel the report.
This report criteria technique is described in Chapter 14.

FIGURE 7-13

c07.indd 214c07.indd 214 7/2/2010 3:39:31 PM7/2/2010 3:39:31 PM

VBA Error Handling x 215

There are other errors that you can expect. Maybe you expect a certain fi le to be on the hard drive,
but it isn’t. Maybe you expect a form to be open, but somehow it has been closed. These kinds of
errors can usually be absorbed by your application, never allowing the user to see them.

In these situations, your code should just ignore the error and keep going. Whenever Access encoun-
ters an error, it makes an error number available to your code. To absorb an expected error, you add
an If statement to check if the error number matches the number you expect. If it matches, you can
just Resume Next to continue to the next line of code without bothering the user with an error dia-
log box. If it doesn’t match, you can drop into your normal error handling.

Next, we explore some basic error-handling code that can be used to handle both expected and
unexpected errors in your application. Then we’ll look more specifi cally at expected errors in the
section “More on Absorbing Expected Errors.”

Basic Error Handling

Let’s start with the basics. Here’s some code that you could add to every procedure to build in easy,
no-frills error handling:

Public Function MyFunction
On Error GoTo Error_Handler

 `your function code goes here

Exit_Procedure:
 Exit Function

Error_Handler:
 MsgBox `̀ An error has occurred in this application. `̀ _
 & `̀ Please contact your technical support and `̀ _
 & `̀ tell them the following information:˝ _
 & vbCrLf & vbCrLf & `̀ Error Number `̀ & Err.Number & `̀ , `̀ _
 & Err.Description, _
 Buttons:=vbCritical

 Resume Exit_Procedure
End Function

code snippet Basic Error Handling in ch07_CodeSnippets.txt

Let’s take a look at some important lines in the code, beginning with the following:

On Error GoTo Error_Handler

The On Error GoTo statement in VBA tells the code to jump to a particular line in the procedure
whenever an error is encountered. It sets up this directive, which remains in effect until it is replaced
by another On Error statement or until the procedure ends. In this example, when any error is
encountered, the code execution jumps to the line named Error_Handler.

In the early days of Basic and other procedural languages, lines were numbered,
not named. For example, your code might have a line GOTO 1100. In VBA, you
still have the GoTo statement, but instead of numbering the lines, you can give
them meaningful names like Exit_Procedure.

c07.indd 215c07.indd 215 7/2/2010 3:39:32 PM7/2/2010 3:39:32 PM

216 x CHAPTER 7 USING VBA IN ACCESS

If no error occurs throughout the main body of the procedure, the execution of the code falls
through to this point:

Exit_Procedure:
 Exit Function

and the Exit Function will run. As its name implies, the Exit Function statement exits this
function immediately, and no lines after it will be executed. Note that if this procedure is a sub
instead of a function, you use Exit Sub instead.

This same Exit_Procedure line is also executed after any unexpected errors are handled:

Error_Handler:
 MsgBox `̀ An error has occurred in this application. `̀ _
 & `̀ Please contact your technical support and `̀ _
 & `̀ tell them this information:˝ _
 & vbCrLf & vbCrLf & `̀ Error Number `̀ & Err.Number & `̀ , `̀ _
 & Err.Description, _
 Buttons:=vbCritical

If an error occurs, execution jumps to the Error_Handler line, and a message box is displayed to
the user. When the user clicks OK (her only choice), the code execution is redirected back to the
Exit_Procedure line:

Resume Exit_Procedure

and your code exits the procedure.

With this technique, execution of the code falls through to the Exit_Procedure code and the func-
tion exits normally, as long as no errors are encountered. However, if an error is encountered, the
execution is redirected to the error-handling section.

In early versions of Access, the labels for the Exit_Procedure and Error_Handler
sections had to be unique in the entire module. This forced programmers to use
labels such as Exit_MyFunction and Error_MyFunction. In recent versions of
Access, these labels may be duplicated in different procedures. This is a great
improvement because now you can copy and paste error-handling code into
each procedure with almost no modifi cation.

This is the most basic error handling you can include in your code. However, there’s one word that
you can add to make your code much easier to debug: Resume. Yes, it’s just one word, but it can
work wonders when you are trying to make your code easier to debug.

Basic Error Handling with an Extra Resume

One of the problems with basic error handling is that when an error does occur, you have no easy
way of knowing the exact line that caused the error. After all, your procedure may have dozens or
hundreds of lines of code. When you see the error message, the execution of your code has already
jumped to your error handler routine and displayed the message box; you may not be able to tell

c07.indd 216c07.indd 216 7/2/2010 3:39:32 PM7/2/2010 3:39:32 PM

VBA Error Handling x 217

which line caused the problem. Many programmers rerun the code, using debug mode, to step
through the code to try to fi nd the offending line.

But there is a much easier way to fi nd that error-producing line of code: Just add a Resume line after
the Resume Exit_Procedure.

You’re probably thinking, “Why would you add an extra Resume right after another Resume Exit_
Procedure? The extra Resume will never run!” You’re right. It will never run under normal cir-
cumstances. But it will run if you ask it to. If your application encounters an error, you can override
the next line that will run. In debug mode, you can just change the next line to be executed to your
extra Resume. The Resume Exit_Procedure statement is skipped entirely. The following code is
identical to the basic code shown previously, but with that one extra Resume.

Public Function MyFunction()
On Error GoTo Error_Handler

 Dim varReturnVal As Variant

 `your function code goes here

Exit_Procedure:
 Exit Function `or Exit Sub if this is a Sub

Error_Handler:
 MsgBox `̀ An error has occurred in this application. `̀ _
 & `̀ Please contact your technical support and tell them this information:˝ _
 & vbCrLf & vbCrLf & `̀ Error Number `̀ & Err.Number & `̀ , `̀ _
 & Err.Description, _
 Buttons:=vbCritical, title:=˝My Application˝
 Resume Exit_Procedure
 Resume

End Function

code snippet Basic Error Handling With An Extra Resume in ch07_CodeSnippets.txt

Under normal operation, the extra Resume never runs because the line before it transfers execution
of the code elsewhere. It comes into play only when you manually cause it to run. To do this, you
can do something that is rarely done in debug mode: Move the execution point in the code to a dif-
ferent statement.

Here’s how the extra Resume works. Say your code is supposed to open a report, but there’s a prob-
lem: The report name you specifi ed doesn’t exist. Your code might look like this:

Private Sub cmdPreview_Click()
On Error GoTo Error_Handler

 If Me!lstReport.Column(3) & `̀ ˝ <> `̀ ˝ Then
 DoCmd.OpenReport ReportName:=Me!lstReport.Column(3),
 View:=acViewPreview
 End If

 `Update the Last Run Date of the report
 DoCmd.SetWarnings False
 DoCmd.RunSQL `̀ UPDATE tsysReport `̀ _
 & `̀ SET tsysReport.DtLastRan = Date() `̀ _
 & `̀ WHERE tsysReport.RptKey = `̀ & Me.lstReport
 DoCmd.SetWarnings True

c07.indd 217c07.indd 217 7/2/2010 3:39:33 PM7/2/2010 3:39:33 PM

218 x CHAPTER 7 USING VBA IN ACCESS

Exit_Procedure:
 On Error Resume Next
 DoCmd.SetWarnings True
 Exit Sub

Error_Handler:
 MsgBox `̀ An error has occurred in this application. `̀ _
 & `̀ Please contact your technical support and `̀ _
 & `̀ tell them the following information:˝ _
 & vbCrLf & vbCrLf & `̀ Error Number `̀ & Err.Number & `̀ , `̀ &
 Err.Description, _
 Buttons:=vbCritical, title:=˝My Application˝
 Resume Exit_Procedure
 Resume

End Sub

When you run your code, an error message
appears, as shown in Figure 7-14.

Instead of clicking OK as your user would do,
press Ctrl+Break on your keyboard. A Visual
Basic dialog box appears, as shown in
Figure 7-15.

This extra Resume technique won’t work in an Access runtime application
because in runtime versions no design modes are allowed, including the VBA
code editor. It also won’t work in an Access MDE or ACCDE because all VBA
source code is not accessible from within those applications.

Now click the Debug button. The code displays in the Code window, as shown in Figure 7-16.

The Resume Exit_Procedure statement will be indicated by an arrow and highlighted in yellow.
This is the statement that will execute next if you continue normally. But instead of letting it run,

FIGURE 7-14

FIGURE 7-15

c07.indd 218c07.indd 218 7/2/2010 3:39:33 PM7/2/2010 3:39:33 PM

VBA Error Handling x 219

you take control, using your mouse to drag the yellow arrow down one line to the extra Resume line.
By doing this, you indicate that you want the Resume line to run next.

Instead of using the mouse, you can click or arrow down to the Resume line, and
then use Debug...Set Next statement (Ctrl+F9 on your keyboard). As usual in
Access, there are several ways to do the same thing.

Now, the yellow arrow will be pointed at the Resume statement, as shown in Figure 7-17.

Now, you want the Resume statement to run
in order to retry the statement that caused the
error. Press F8 to run the next line of code
(your Resume) and stop. Or, you can choose
Debug...Step Into from the menu.

The exact line that caused the error will now be
indicated by an arrow, as shown in Figure 7-18.
That was easy, wasn’t it?

Now, admittedly, this is a simple example.
You probably could have determined which
line caused the error just by looking at the
error description. However, when your proce-
dures contain pages of code, often with coding
loops, complex logic, and similar statements, this extra Resume technique comes in handy. It can
save you many hours of time while you are debugging your VBA code.

The extra Resume doesn’t cause any harm in your code, so you can leave it in every procedure even
when you deliver your application. Also, if a technically savvy client encounters an unexpected error

FIGURE 7-16

FIGURE 7-18

FIGURE 7-17

c07.indd 219c07.indd 219 7/2/2010 3:39:33 PM7/2/2010 3:39:33 PM

220 x CHAPTER 7 USING VBA IN ACCESS

and she’s running an MDB or ACCDB (not an MDE or ACCDE), you can walk the client through
this process to help determine what caused the problem in the client’s environment. As you know,
what works on your PC doesn’t always work when your user is running it.

Basic Error Handling with a Centralized Message

There’s one more thing you can do to make your error-handling code even easier to maintain.
Instead of repeating the code to display the message box in every procedure, you can move it to a
reusable function that handles it consistently every time.

The following code basically tells the user that an unexpected error occurred. It is needed in every
procedure in your application.

MsgBox `̀ An error has occurred in this application. `̀ _
& `̀ Please contact your technical support and `̀ _
& `̀ tell them this information:˝ _
& vbCrLf & vbCrLf & `̀ Error Number `̀ & Err.Number & `̀ , `̀ &
Err.Description, _Buttons:=vbCritical, title:=˝My Application˝

Instead, you can centralize this in a function that’s called using one line:

DisplayUnexpectedError Err.Number, Err.Description

Much cleaner! This mundane bit of business is handled with just one line. Now you just need the
function that it calls, DisplayUnexpectedError. Here it is:

Public Sub DisplayUnexpectedError(ErrorNumber As String, _
ErrorDescription As String)
'Note: since this is a universal error handling procedure,
'it does not have error handling

MsgBox `̀ An error has occurred in this application. `̀ _
& `̀ Please contact your technical support and `̀ _
& `̀ tell them this information: ˝ _
& vbCrLf & vbCrLf & `̀ Error Number `̀ & ErrorNumber & `̀ , `̀ &
ErrorDescription, _Buttons:=vbCritical, title:=˝My Application˝

End Sub

code snippet Error Handling With A Centralized Message in ch07_CodeSnippets.txt

In this code, Err.Number is replaced with ErrorNumber, and Err.Description with
ErrorDescription. That’s necessary because you’re calling a different function and
sending in those two values as parameters.

This technique cleans up and shortens your code a lot, but there is an even better reason to use it.
If you ever want to change the text of the message displayed to the user, you have only to change
it in one place — the DisplayUnexpectedError function — instead of searching and replacing it
throughout all your procedures.

Note that if you use this centralized message technique, you’ll have one more step in your code when
you debug using the extra Resume statement shown earlier. After you click Debug, the End Sub
statement in the subroutine DisplayUnexpectedError will be highlighted. Press F8 (Step Into) once
to get back to the procedure that caused the error. (This is a minor inconvenience compared to the
benefi t of the centralized error message.)

c07.indd 220c07.indd 220 7/2/2010 3:39:34 PM7/2/2010 3:39:34 PM

VBA Error Handling x 221

Cleaning Up after an Error

Errors often occur in the middle of a lengthy procedure, when all kinds of things are happening.
Many settings or values persist after an error occurs, and it’s up to you to make sure they are reset
back to their appropriate values. For example, these situations may be true when an unexpected
error occurs in your procedure:

 ‰ Objects are open.

 ‰ The hourglass is on.

 ‰ You have set the status bar text or a progress meter.

 ‰ Warnings are off.

 ‰ You are in a transaction that should be rolled back if an error occurs.

Although your code may clean up all these settings under normal circumstances, a common mistake
is to leave a mess when your code encounters an error. You don’t want to leave a mess, do you?

Neglecting to clean up can cause problems, ranging in severity from annoying to serious. For exam-
ple, if you don’t turn the hourglass off, it will remain on while your users continue their work in
Access. That’s just annoying.

More seriously, if you don’t turn DoCmd.SetWarnings back to True, any action queries (such as an
Update or Delete query) will modify or delete data without any warning. Obviously, that can cause
some serious problems that neither you nor your users will appreciate.

Have you ever seen an Access application that won’t close? Even when you click
the X button, or run a DoCmd.Quit in your code, Access just minimizes instead
of closing. This can be quite mysterious. Many reasons have been identifi ed
for this behavior, but one of them is related to cleaning up. Normally, Access
automatically closes and releases objects when they fall out of scope, typically
when your procedure ends. However, some versions of Access have issues where
this normal cleanup doesn’t occur. Because Access won’t close if it thinks that
some of its objects are still needed, it just minimizes instead. To prevent this,
make sure you close the objects you open, and then set them equal to Nothing.
Although later versions of Access, including Access 2010, do a better job of
automatically releasing each object when its procedure ends, it is good practice
to clean them up explicitly.

To prevent these issues, make sure your code cleans everything up even if it encounters an error. Even
as it is failing and exiting the procedure, its last actions can save you some trouble. Here’s an example:

Public Function MyFunction

On Error GoTo Error_Handler

 Dim varReturnVal as Variant

 `your function code goes here

c07.indd 221c07.indd 221 7/2/2010 3:39:34 PM7/2/2010 3:39:34 PM

222 x CHAPTER 7 USING VBA IN ACCESS

Exit_Procedure:
 Exit Function

Error_Handler:
 On Error Resume Next
 DoCmd.Hourglass False
 DoCmd.SetWarnings True
 varReturnVal = SysCmd(acSysCmdClearStatus)

 DisplayUnexpectedError Err.Number, Err.Description

 Resume Exit_Procedure
 Resume

End Function

Note that the fi rst line in the Error_Handler section is On Error Resume Next. This overrides the
normal error handling and forces the code to continue even if an error is encountered.

Programmers have different styles and preferences for cleaning up after an error. For example, some
programmers prefer to put all the cleanup code in the Exit_Procedure section because they know
that section will run whether the procedure ends normally or abnormally. Other programmers pre-
fer to clean everything up as they go along in the main body of the code and then add additional
cleanup code in the Error_Handler section. Either style is fi ne. The important thing to remember is
that your procedure won’t necessarily end normally. Look through your code to see what will hap-
pen if an error occurs, and make sure it is cleaned up.

One last point: Don’t let your error handling trigger an infi nite error loop. When your code is
already in an error-handling situation, or if it is just trying to fi nish the procedure, set your error
trapping to On Error Resume Next. That way, your code continues, ignoring any errors that occur.
If you don’t add that statement, you might end up in an infi nite loop where an error in your error
handler triggers the error handler again and again.

More on Absorbing Expected Errors

As stated earlier in this chapter, sometimes a normal activity in your application results in Access
encountering an error. For example, if the code behind a report cancels the On Open event,
Access displays an error message. Because this is a normal event, it isn’t necessary for your user
to see an error message. Your application should continue as though nothing happened.

The code in the Open event of the report looks something like this:

Private Sub Report_Open(Cancel As Integer)
On Error GoTo Error_Handler

 Me.Caption = `̀ My Application˝

 DoCmd.OpenForm FormName:=˝frmReportSelector_MemberList˝, _
 WindowMode:=acDialog

 `Cancel the report if `̀ cancel˝ was selected on the dialog form.

 If Forms!frmReportSelector_MemberList!txtContinue = `̀ no˝ Then
 Cancel = True
 GoTo Exit_Procedure
 End If

 Me.RecordSource = ReplaceWhereClause(Me.RecordSource,

c07.indd 222c07.indd 222 7/2/2010 3:39:35 PM7/2/2010 3:39:35 PM

VBA Error Handling x 223

 Forms!frmReportSelector_MemberList!txtWhereClause)

Exit_Procedure:
 Exit Sub

Error_Handler:
 DisplayUnexpectedError Err.Number, Err.Description

 Resume Exit_Procedure
 Resume

End Sub

An open selection criteria form is shown in
Figure 7-19.

If the user clicks OK, the form is hidden and
the report’s On Open code continues. It adds
the selection criteria to the report’s
RecordSource property and displays the
report. However, if the user clicks Cancel, the
form sets a hidden Continue text box to no
before it is hidden. If the report sees a “no” in
this text box, it cancels itself by setting
Cancel = True.

If you set the Cancel parameter to True in
a report’s On Open procedure, an error is
returned to the calling code, and if it isn’t
handled, you see an error, as shown in
Figure 7-20.

Now that is one unnecessary error message! For Access to continue without infl icting it on your
poor user, you must check for this particular error (in this case, 2501) and absorb it by doing noth-
ing but exiting the procedure. The following code shows how to absorb the error:

Private Sub cmdPreview_Click()
On Error GoTo Error_Handler

 If Me!lstReport.Column(3) & `̀ ˝ <> `̀ ˝ Then
 DoCmd.OpenReport ReportName:=Me!lstReport.Column(3), _
 View:=acViewPreview
 End If

 `Update the Last Run Date of the report
 DoCmd.Hourglass True
 DoCmd.SetWarnings False
 DoCmd.RunSQL _
 `̀ UPDATE tsysReport SET tsysReport.DtLastRan = Date() `̀ & _
 `̀ WHERE tsysReport.RptKey = `̀ & Me.lstReport
 DoCmd.SetWarnings True
 DoCmd.Hourglass False

Exit_Procedure:
 Exit Sub

FIGURE 7-19

FIGURE 7-20

c07.indd 223c07.indd 223 7/2/2010 3:39:35 PM7/2/2010 3:39:35 PM

224 x CHAPTER 7 USING VBA IN ACCESS

Error_Handler:
 If Err.Number = 2501 Then
 Resume Exit_Procedure
 Else
 On Error Resume Next
 DoCmd.SetWarnings True
 DoCmd.Hourglass False
 DisplayUnexpectedError Err.Number, Err.Description
 Resume Exit_Procedure
 Resume

 End If
End Sub

In this code, you tell Access to ignore error 2501, should it be encountered. Access will not display
an error message, and will instead exit the procedure immediately. If errors other than 2501 occur,
the code will continue through to the Else statement and use your normal error-handling logic.

If you have several expected error codes that you want to quietly absorb, you can either add them to
the If statement using Or, like this:

If Err.Number = 2501 Or Err.Number = 2450 Then

or, if you want to take a different action for each error, you can use a Select Case statement,
like this:

Select Case Err.Number
Case 2501 `report was cancelled
 Resume Exit_Procedure
Case 2450 `form is no longer loaded
 Resume Next
Case Else
 ...normal error handling
End Select

In this example, when the report is canceled (error 2501), Access will jump directly to Exit_Procedure,
but if it encounters a form that is not loaded (error 2450), it will use Resume Next to ignore the
error and continue with the next line of code.

While you are becoming familiar with including error handling in every procedure, or if you aren’t
sure which error numbers need special handling, just include the basic error handling with the extra
Resume. As specifi c expected errors pop up during your development and testing, you can add the
code to quietly handle and absorb them.

Issues in Error Handling

Some developers try to enhance their error handling with writing log fi les or sending e-mail. There are
some issues involved with these error-handling techniques, as explained in the following sections.

Don’t Use Error Handling with Logging

Some developers write code to insert an error log record into a table or text fi le when an
error occurs. The idea is to be able to analyze when and where errors have occurred by

c07.indd 224c07.indd 224 7/2/2010 3:39:35 PM7/2/2010 3:39:35 PM

Summary x 225

querying this table long after the errors happened. However, this technique has some
issues.

 ‰ Access does not provide a way to determine the name of the procedure that is currently run-
ning. Because any error logging routine needs to know which procedure caused the error,
you need to manually code the name of the current procedure into each error routine. That is
labor intensive and prone to errors.

 ‰ The benefi t of error logging is questionable because few errors should be happening after
your code has been tested and delivered. Errors should be rare enough that your users will let
you know when they happen. You can always ask them to capture a screenshot if you want
to see the details.

 ‰ Some types of errors cause the attempt to log them to fail. Examples include loss of network
connectivity, and disconnected storage hardware. Your user may see additional unrelated
errors, or you could be lulled into thinking that all errors are logged, when they may not be.

If your code is running in a managed environment, it may be benefi cial to log errors to the System
Event Log. For more information on this, refer to Chapter 20. The bottom line is that spending the
time to log unexpected errors to a table or text fi le is not recommended. This is one of those cases
where the benefi ts usually don’t outweigh the costs.

Don’t Use Error Handling That Sends E-Mail

Another interesting way to track the errors that are occurring in an application is to add code to the
error-handling routines that “phone home” when an error occurs. Specifi cally, the application builds
and sends an e-mail to you (the developer) whenever an unexpected error occurs. This is usually
done with the SendObject method, although there are other ways to utilize MAPI (mail application
programming interface) directly.

This approach has the same problems listed in the preceding section, plus a few more:

 ‰ Your code needs to be able to send an e-mail using an installed e-mail client. There is
always a possibility that there is no e-mail client installed, or it is not compatible with your
e-mailing code.

 ‰ Some e-mail clients (for example, Microsoft Outlook) have code to protect against viruses
using the e-mail program to propagate themselves to other computers. If an outside program
(in this case, yours) tries to send an e-mail, a warning message displays, alerting the user that
a virus may be attempting to send e-mail. That isn’t what you want your user to see when
your application is running.

As with error handling with logging, this technique is probably more trouble than it is worth.

SUMMARY

The only way to really learn how to execute VBA in your Access applications is to jump in there and
try it. Using the techniques explained in this chapter — how to prevent problems with asynchronous
execution, how to use recordsets and recordset clones, how to debug VBA, and more — you can
tackle many of the common programming tasks that your users will need.

c07.indd 225c07.indd 225 7/2/2010 3:39:35 PM7/2/2010 3:39:35 PM

226 x CHAPTER 7 USING VBA IN ACCESS

Every procedure you write in Access VBA should have error handling. Keep error handling simple
and easy to implement, with one basic copy-and-paste code block. Then do a few quick steps if nec-
essary to adapt the error handling to your procedure:

 ‰ Change Exit Function to Exit Sub if the procedure is a sub.

 ‰ Add code to quietly absorb expected errors, if any.

 ‰ Make sure you perform any necessary cleanup if an error occurs.

By following these error-handling guidelines, you’ll build VBA code that is easier to debug and
maintain, so you can focus on building great features into your application.

c07.indd 226c07.indd 226 7/2/2010 3:39:35 PM7/2/2010 3:39:35 PM

CONTENTS

INTRODUCTION xxxiii

CHAPTER 1: INTRODUCTION TO MICROSOFT ACCESS 2010 1

A Brief History of Access 2

When to Use Access 2

Microsoft Offi ce Access 2010 3

SQL Server 2008 Express Edition 3

SQL Server 2008 4

How Do You Choose? 4

Access Database Basics 5

Getting Started in Access 2010 5

Access 2010 Database Templates 5

The Access Navigation Pane 6

The Access Ribbon 7

The Access Security Bar 7

Access Database Objects 7

Creating Tables 7

Creating Queries 9

Creating Forms 10

Creating Reports 10

Creating Macros 11

Creating Modules 11

Summary 12

CHAPTER 2: NEW FEATURES 13

New Look 14

Development Environment 15

64-Bit 15

Offi ce Backstage 15

Calculated Columns 16

Integration with Offi ce Themes 18

New Macro Designer 19

Expression Builder 20

Web Service Expressions 21

Application Parts 21

ftoc.indd xiiiftoc.indd xiii 7/5/2010 5:59:07 PM7/5/2010 5:59:07 PM

xiv

CONTENTS

Forms 22

Web Browser Control 22

New Navigation Control 23

Subreports in Forms 24

Macros 25

UI Macros 25

Data Macros 25

Integration with SharePoint 26

Working with Data on SharePoint 27

Publish the Database to SharePoint 27

Additional SharePoint Features 27

Browser Interface/Applications 28

Introducing the Web Form Designer 29

Introducing Web Report Designer 29

Feature Restrictions (Features Disabled in Web Applications) 30

What’s Gone or Deprecated 30

Calendar Control 30

ISAMs 30

Replication Confl ict Resolver 31

Snapshot Format 31

Summary 31

CHAPTER 3: UPGRADING AND CONVERTING TO ACCESS 2010 33

To Convert or To Enable 34

Common Terminology 34

Key Decision Factors 35

Feature Sets and File Extensions: What’s New,

What’s Replaced, What Happens 36

Other Things to Consider 43

Installing Multiple Versions of Access on One PC 46

Changing File Formats 48

Selecting the Default File Format 48

Overriding the Default File Format 48

ACCDE and MDE Files 49

Steps for Converting or Enabling 49

File Conversion Using Access 2010: A One-Stop Shop 49

Other Considerations When Converting 50

Converting to Access 97 or Earlier Is a Two-Version Process 51

Converting a Secured Database 51

Converting a Password-Protected Database 52

Converting a Database with Password-Protected VBA 53

ftoc.indd xivftoc.indd xiv 7/5/2010 5:59:08 PM7/5/2010 5:59:08 PM

xv

CONTENTS

Converting a Replicated Database 53

Enabling a Database 56

Enabling the Experience: Opening 95 or 97 Files with Access 2010 56

Access 2010: 64-Bit Considerations 57

Porting an Access application to a 64-bit Platform 58

Summary 61

CHAPTER 4: MACROS IN ACCESS 2010 63

VBA versus Macros in Access 63

Benefi ts of Using VBA 64

Benefi ts of Using Macros 65

Types of Macros 66

Macro Objects 66

Embedded Macros 66

Data Macros 67

Creating Macros in Access 2010 67

New Macro Designer 69

Additional Macro Changes 75

Sharing Macros Using Access 2010 76

Running Macros 76

Debugging Macros 77

Macro Objects and Embedded Macros 78

Error Handling 78

Variables 79

Macro Actions and Arguments 82

Macro Scenarios 87

Data Macros 93

Types of Data Macros 94

Running Data Macros 95

Data Macro Blocks 95

Data Macro Properties 97

Data Macro Actions and Arguments 98

Error Handling 99

Variables 101

Data Macro Scenarios 101

Summary 117

CHAPTER 5: USING THE VBA EDITOR 119

Anatomy of the VBA Editor 119

Using the Object Browser 121

ftoc.indd xvftoc.indd xv 7/5/2010 5:59:08 PM7/5/2010 5:59:08 PM

xvi

CONTENTS

Object Browser Components 122

Show Hidden Members 124

Testing and Debugging VBA Code 124

Immediate Window 125

The Debug.Print Statement 127

The Debug.Assert Statement 128

Breakpoints 128

Stepping through Code 130

Call Stack 132

Run to Cursor 134

Locals Window 135

Watch Window 135

Edit and Continue 137

Using Option Statements 137

Summary 139

CHAPTER 6: VBA BASICS 141

The Mindset of a Programmer 142

Anatomy of VBA Procedures 142

VBA Keywords 145

VBA Operators 146

Variables and VBA Syntax 147

Variables 147

Naming Your Variables 149

Variable Scope and Lifetime 151

Overlapping Variables 153

Other VBA Components 156

Option Statements 156

Comments 156

Line Continuation 157

Constants 159

Enums 160

VBA Objects 161

Properties 162

Methods 162

Events 162

Using Code Behind Forms and Reports 163

Using VBA Code to Call Macros 165

Writing Code in Modules 166

Example: User-Defi ned Function 169

Summary 171

ftoc.indd xviftoc.indd xvi 7/5/2010 5:59:08 PM7/5/2010 5:59:08 PM

xvii

CONTENTS

CHAPTER 7: USING VBA IN ACCESS 173

When Events Fire 174

Common Form Events 174

Common Control Events 176

Common Report Events 176

Asynchronous Execution 177

VBA Procedures 179

Function or Sub? 179

Public or Private? 180

Coupling and Cohesion 181

Error Handling 183

Using Variables 183

Evaluating Expressions in VBA 185

If ... Then 185

Checking for Nulls 186

Select Case 188

Using Recordsets 188

Opening Recordsets 188

Looping through Recordsets 189

Adding Records 190

Finding Records 191

Updating Records 191

Using Multiple Recordsets 192

Copying Trees of Parent and Child Records 192

Using Bookmark and RecordsetClone 194

Cleaning Up 195

Using VBA in Forms and Reports 196

All about Me 196

Referring to Controls 197

Referring to Subforms and Subreports 197

Closing Forms 198

Debugging VBA 199

Investigating Variables 200

When Hovering Isn’t Enough — Using the Immediate Window 202

Setting Breakpoints 202

Setting Watch Values 202

Stopping Runaway Code 204

Stepping through Your Code 204

Common VBA Techniques 206

ftoc.indd xviiftoc.indd xvii 7/5/2010 5:59:08 PM7/5/2010 5:59:08 PM

xviii

CONTENTS

Drilling Down with Double-Click 206

Date Handling 207

Handling Rounding Issues 209

String Concatenation Techniques 211

The Diff erence Between & and + 211

String Concatenation Example 212

VBA Error Handling 213

Why Use Error Handling? 213

Two Kinds of Errors: Unexpected and Expected 214

Basic Error Handling 215

Cleaning Up after an Error 221

More on Absorbing Expected Errors 222

Issues in Error Handling 224

Summary 225

CHAPTER 8: CREATING CLASSES IN VBA 227

Why Use Classes? 228

A Touch of Class 228

Creating a Class Module 230

Adding a Class Module to the Project 230

A Brief Word on Naming the Class 230

Instantiating Class Objects 231

Creating Class Methods 231

Creating Property Procedures 234

Naming and Identifying Objects 241

What Does the Object Do? 242

Naming Techniques 242

Identifying a Class Instance 243

Using Class Events 243

Initialize and Terminate Events 243

Creating Custom Class Events 244

Responding to Events 245

Handling Errors in Classes 248

Forms and Reports as Objects 251

Variable Scope and Lifetime 257

The Me Property 260

Subclassing the Form 260

Creating the Subclassed Form 261

Creating a Parent Property 261

Creating a Clone Method 262

ftoc.indd xviiiftoc.indd xviii 7/5/2010 5:59:08 PM7/5/2010 5:59:08 PM

xix

CONTENTS

Creating and Using Collection Classes 264

The Collection Object 264

Collection Class Basics 266

The Three Pillars 275

Encapsulation 275

Inheritance 276

Polymorphism 276

Inheriting Interfaces 277

Instancing 280

Summary 281

CHAPTER 9: EXTENDING VBA WITH APIS 283

Introducing the Windows API 284

Finding API Functions 284

Why You Need the API 285

Introducing Linking 287

Static Linking 287

Dynamic Linking 287

Declaring APIs 288

The Declare Keyword 288

The PtrSafe Keyword 289

Naming the Procedure 289

Specifying the Lib(rary) and Argument List 290

Understanding C Parameters 293

Signed and Unsigned Integers 293

Numeric Parameters 294

Object Parameters 297

String Parameters 298

Variant Parameters 298

Pointers to Numeric Values 298

Pointers to C Structures 299

Pointers to Arrays 299

Pointers to Functions 300

Pointers in 64-Bit Windows 301

The Any Data Type 304

Err.LastDLLError 304

Distributing Applications That Reference Type Libraries
and Custom DLLs 306

Useful API Functions 306

Returning the Path to the Windows Folder 306

ftoc.indd xixftoc.indd xix 7/5/2010 5:59:08 PM7/5/2010 5:59:08 PM

xx

CONTENTS

Determining Whether the System Processor Is 32-Bit or 64-Bit 307

Determining Whether Windows Is 32-Bit or 64-Bit 308

Determining Whether Offi ce Is 32-Bit or 64-Bit 308

Displaying the Windows Open Dialog Box 309

Finding the Position of a Form 311

Finding the Temp Directory 312

Generating a Unique Temp Filename 312

Finding the Login Name of the Current User 313

Finding the Computer Name 314

Opening or Printing Any File 314

Delaying Code Execution 315

Getting the Path to a Special Folder 315

Locking the Computer 317

Summary 317

CHAPTER 10: WORKING WITH THE WINDOWS REGISTRY 319

About the Registry 320

What the Registry Does 320

What the Registry Controls 321

Accessing the Registry 321

Registry Organization 322

Registry Organization on 64-Bit Windows 328

Using the Built-In VBA Registry Functions 329

SaveSetting 330

GetSetting 330

GetAllSettings 331

DeleteSetting 332

Typical Uses for the Built-In VBA Registry Functions 332

Using the Windows Registry APIS 335

Getting Started 335

Creating a Registry Key 341

Setting the Value for a Key 342

Getting the Value for a Key 343

Deleting a Registry Value 344

Deleting a Registry Key 345

Testing the Function Wrappers 346

Opening an Existing Registry Key 348

Connecting to the Registry on a Remote Computer 349

Enumerating Registry Keys and Values 350

Summary 353

ftoc.indd xxftoc.indd xx 7/5/2010 5:59:08 PM7/5/2010 5:59:08 PM

xxi

CONTENTS

CHAPTER 11: USING DAO TO ACCESS DATA 355

Data Access Objects 355

Why Use DAO? 356

New Features in DAO 357

Multi-Value Lookup Fields 357

Attachment Fields 358

Append-Only Fields 359

Database Encryption 359

Calculated Fields 359

Referring to DAO Objects 359

The DBEngine Object 361

The Workspaces Collection 361

The Errors Collection 365

The Database Object 366

The Default (Access) Database 366

The CurrentDb Function 367

Opening an External Database 368

DAO Object Properties 370

DAO Property Types 370

Creating, Setting, and

Retrieving Properties 370

Creating Schema Objects with DAO 374

Creating Tables and Fields 375

Creating Indexes 378

Creating Relations 380

Creating Multi-Value Lookup Fields 382

Creating Calculated Fields 385

Data Access with DAO 386

Working with QueryDefs 386

Working with Recordsets 389

Filtering and Ordering Recordsets 391

Navigating Recordsets 394

Bookmarks and Recordset Clones 399

Finding Records 402

Working with Recordsets 405

Working with Attachment Fields 409

Append-Only Fields 414

Summary 417

ftoc.indd xxiftoc.indd xxi 7/5/2010 5:59:08 PM7/5/2010 5:59:08 PM

xxii

CONTENTS

CHAPTER 12: USING ADO TO ACCESS DATA 419

Introduction to ADO in Access 420

Adding ADO References 420

Referring to ADO Objects 420

Connecting to ADO Data Sources 421

Creating an Implicit Connection 421

Creating an ADO Connection Object 422

Creating a Connection String 423

Creating a Data Link Connection 424

Closing a Connection 425

Working with Cursors 426

Using Transactions 427

Data Access with ADO 429

Overview of the ADO Object Model 429

Using the Execute Method 430

Creating Recordsets 434

Navigating Recordsets 437

Working with Data in Recordsets 441

Using ADO Events 448

Declaring WithEvents 448

Implementing ADO Event Methods 449

Implicitly Triggering Events 449

Explicitly Calling Events 450

Testing the State Property 451

Schema Recordsets with ADO 451

ADO Schema Recordsets 451

Specifying Constraint Columns 452

Using ACE Specifi c Schemas 452

Creating Schema with ADOX 453

Adding References to ADOX 453

The ADOX Object Model 453

Working with Tables 454

Working with Views (Queries) 455

Managing Security with ADOX 457

Summary 457

CHAPTER 13: USING SQL WITH VBA 459

Working with SQL Strings in VBA 460

Building SQL Strings with Quotes 460

Using Single Quotation Marks instead of Double Quotation Marks 461

ftoc.indd xxiiftoc.indd xxii 7/5/2010 5:59:09 PM7/5/2010 5:59:09 PM

xxiii

CONTENTS

Concatenating Long SQL Strings 462

Using SQL When Opening Forms and Reports 463

Using SQL to Enhance Forms 464

Sorting on Columns 464

Selections on Index Forms 466

Cascading Combo Boxes 473

Using SQL for Report Selection Criteria 475

Altering the SQL inside Queries 480

The ReplaceOrderByClause and
ReplaceWhereClause Functions 481

Summary 488

CHAPTER 14: USING VBA TO ENHANCE FORMS 489

VBA Basics 490

Properties 490

Event Properties: Where Does the Code Go? 491

Naming Conventions 493

Creating Forms the 2010 Way 494

Columnar and Tabular Layouts 495

Anchoring 496

The Modal Dialog Box Mode 499

Control Wizards — Creating Command Buttons Using

VBA or Macros 499

Command Button Properties 500

Attachment Controls 501

Combo Boxes 505

Using the BeforeUpdate Event 516

Saving E-mail Addresses Using the Textbox AfterUpdate Event 519

Outputting to PDF 522

OpenArgs 523

IsLoaded() 524

On Timer () 525

Late Binding 527

On Click(): Open a Form Based on a Value on the Current Form 531

Multiple Form Instances 534

Displaying Data in TreeView and ListView Controls 540

Summary 548

CHAPTER 15: ENHANCING REPORTS WITH VBA 549

Introduction to Reports 549

How Reports Are Structured 550

ftoc.indd xxiiiftoc.indd xxiii 7/5/2010 5:59:09 PM7/5/2010 5:59:09 PM

xxiv

CONTENTS

New in Access 2007 551

New in Access 2010 551

Creating a Report 554

Working with VBA in Reports 555

Control Naming Issues 555

The Me Object 556

Important Report Events and Properties 556

Opening a Report 556

Section Events 558

Closing a Report 562

Report Properties 562

Section Properties 563

Control Properties 564

Working with Charts 565

Common Report Requests 565

Changing the RecordSource at Runtime 565

Gathering Information from a Form 566

Changing the Printer 567

Dictionary-Style Headings 568

Shading Alternate Rows 570

Conditional Formatting of a Control 572

Creating a Progress Meter Report 573

Layout View 575

Report View 576

Considerations When Designing for Report View 576

Interactivity 577

Summary 579

CHAPTER 16: CUSTOMIZING THE RIBBON 581

Ribbon Overview 582

Custom Menu Bars and Toolbars 582

Custom Menu Bars 582

Shortcut Menu Bars 583

Ribbon Customization Using the Options Dialog Box 583

Ribbon Customization 584

Saving a Custom Ribbon 584

Specifying the Custom Ribbon 585

Defi ning a Ribbon Using XML 586

Writing Callback Routines and Macros 597

More Callback Routines 599

Displaying Images 604

ftoc.indd xxivftoc.indd xxiv 7/5/2010 5:59:09 PM7/5/2010 5:59:09 PM

xxv

CONTENTS

Refreshing Ribbon Content 607

Creating an Integrated Ribbon 609

Building the Report Manager 609

Building the Custom Filter Interface 613

Creating a Ribbon from Scratch 616

Defi ning the Tabs and Groups 616

Building the Home Tab 619

Building the Settings Tab 625

Building the Administration Tab 626

More Ribbon Tips 628

Setting Focus to a Tab 628

Additional Resources 629

Summary 630

CHAPTER 17: CUSTOMIZING THE OFFICE BACKSTAGE 631

Introducing the Offi ce Backstage 632

Access 2010 Backstage 632

Parts of the Backstage 633

Uses for the Backstage in Custom Applications 633

Writing a Backstage Customization 634

Controls in the Backstage 634

Tab 634

Group 635

TaskGroup, Category, and Task 637

TaskFormGroup 638

Button 640

GroupBox 641

Hyperlink 641

ImageControl 641

LayoutContainer 642

RadioGroup 643

Designing the Layout of Components 643

Single-Column Layout 644

Two-Column Layout 644

Column Widths 644

Creating a Grid 645

Extending the Existing Backstage 649

Adding a Group to an Existing Tab 649

Adding a Category to an Existing TabFormGroup 650

Adding a Task to an Existing TaskGroup 651

Backstage-Specifi c Callbacks 653

ftoc.indd xxvftoc.indd xxv 7/5/2010 5:59:09 PM7/5/2010 5:59:09 PM

xxvi

CONTENTS

onShow 653

onHide 653

getStyle 654

getHelperText 654

getTitle 654

getTarget 655

Backstage Scenarios 655

Access Runtime Experience 655

Setting the Title of a Tab to the Application Title 656

About Page and Contact Form 656

Warning for a Missing Reference 660

Custom Database Information 662

Creating a Bulleted or Numbered List 664

Welcome Page with Image 665

Other Possible Examples 668

Summary 668

CHAPTER 18: WORKING WITH OFFICE 2010 671

Working with Outlook 2010 672

Setting References to Outlook 672

Creating Outlook Application Objects 672

Working with MailItem objects 674

Outlook Security Features 678

Other Outlook Objects 679

More Information about Outlook 684

Working with Excel 2010 684

Setting References to Excel 684

Creating Excel Application Objects 685

Working with Excel Workbooks 686

Working with Sheets in Excel 689

Working with Data in Excel 691

More Information about Excel 695

Working with Word 2010 695

Setting References to Word 695

Creating Word Application Objects 696

Working with Document Objects 698

Working with Data in Word 701

More Information about Word 705

Summary 705

ftoc.indd xxviftoc.indd xxvi 7/5/2010 5:59:09 PM7/5/2010 5:59:09 PM

xxvii

CONTENTS

CHAPTER 19: WORKING WITH SHAREPOINT 707

SharePoint 2010 707

What Is SharePoint? 708

SharePoint 2010 Requirements 708

SharePoint 2010 Versions 708

Access Services on SharePoint Server 709

Access Features Overview 709

SharePoint Features in Access 2010 709

Access Features in SharePoint 2010 710

SharePoint Features in Access 711

Access Web Applications 711

Linked Tables to SharePoint 724

Migrating a Database to SharePoint 731

Publishing a Database to SharePoint 736

Access Features on SharePoint 740

SharePoint 2.0 Shows Access Features 740

Access Web Datasheet 741

Open with Access 742

Importing from SharePoint 748

Access Views on SharePoint 752

Summary 756

CHAPTER 20: WORKING WITH .NET 757

Overview 758

Example Files 758

Visual Studio .NET 2010 758

Getting Visual Studio 2010 759

Installing Visual Studio 2010 760

.NET Terminology 760

Writing Code in Visual Studio 2010 762

Debugging Code in Visual Studio 2010 769

The MSDN Library 770

Using Access Databases in .NET 771

Working with ADO.NET 771

Types of .NET Applications 776

Building Client Applications 776

Building Web Applications 779

Other Methods of Using Access Databases 781

ftoc.indd xxviiftoc.indd xxvii 7/5/2010 5:59:09 PM7/5/2010 5:59:09 PM

xxviii

CONTENTS

Automating Access with .NET 782

The Access PIA 782

Setting References 782

Creating Code to Automate Access 783

Running the Automated Application 785

Creating COM Add-Ins for Access 785

The Benefi ts of COM Add-Ins 786

Creating a New COM Add-In Project 786

Setting References to the Access PIA 787

Adding Custom Code to the Add-In 788

Installing the COM Add-In 791

Running the COM Add-In 791

Using .NET Code in Access 791

Creating a Managed Library in .NET 791

Calling a Managed Library from VBA 796

Summary 797

CHAPTER 21: BUILDING CLIENT-SERVER APPLICATIONS
WITH ACCESS 799

Database Application Evolution 800

Client-Server Applications 800

Using the Sample Files 801

Installing the Sample Database 802

Choosing the Correct File Format 803

The ACCDB/MDB File Format 803

Linking to External Data 804

Creating a DSN via Access 805

DSN Connection Types 807

Using ACE with ODBC Data Sources 807

Increasing ODBC Performance 810

The ADP File Format 813

Using ADPs to Link to Data 814

Query Options on SQL Server 816

ACCDB/MDB versus ADP 817

Recordset Diff erences 818

Security Diff erences 818

Local Data Storage 819

Sharing Application Files 819

Controlling the Logon Process 820

Controlling Login for ACCDB/MDB Files 820

Controlling the Login Process for ADPs 823

ftoc.indd xxviiiftoc.indd xxviii 7/5/2010 5:59:09 PM7/5/2010 5:59:09 PM

xxix

CONTENTS

Binding ADO Recordsets 826

Binding to a Form, ComboBox, or ListBox 826

Binding to a Report 827

Using Persisted Recordsets 830

Working with Unbound Forms 831

When to Use Unbound Forms 832

Creating Unbound Forms 832

Summary 840

CHAPTER 22: THE ACCESS 2010 TEMPLATES 841

Access 2010 Template Features 841

Access 2010 Templates Types 842

Standalone Database Templates 842

Access Web Application Templates 843

Templates for SharePoint Applications 844

Application Parts 844

Table Field Templates 844

Save As Template 845

Creating ACCDT Files 845

Features Not Supported in ACCDT Files 846

Deploying ACCDT Files 847

The ACCDT File Format 849

The ACCDT File Parts 851

The Template’s Root Folder 851

The Template Folder 852

The Database Folder 854

The Objects Folder 857

Summary 860

CHAPTER 23: ACCESS RUNTIME DEPLOYMENT 861

The Access 2010 Runtime 861

Why Use the Access Runtime? 862

Access 2010 Runtime Versions 862

Getting the Access 2010 Runtime 862

Using the Access Runtime 863

Deploying the Access Runtime 865

Manual Installation of the Runtime 865

The Package Solution Wizard 866

Using the Package Solution Wizard 866

Summary 874

ftoc.indd xxixftoc.indd xxix 7/5/2010 5:59:09 PM7/5/2010 5:59:09 PM

xxx

CONTENTS

CHAPTER 24: DATABASE SECURITY 875

ACCDB File Security 876

Shared-Level Security for ACCDBs 877

Securing VBA Code in ACCDB 883

ACCDB Security Summary 887

MDB File Security 888

Shared-Level Security for MDBs 889

Encoding an MDB File 891

Securing VBA Code for MDBs 891

User-Level Security 893

Working with User-Level Security 896

Using the User-Level Security Wizard 896

Using the Access User Interface 896

User-Level Security Using DAO 897

User-Level Security Using ADO 906

User-Level Security Using ADOX 916

Summary 917

CHAPTER 25: ACCESS 2010 SECURITY FEATURES 919

The Offi ce Trust Center 920

What Is the Trust Center? 920

Trust Center Features 920

Disabled Mode 926

Why Do We Have Disabled Mode? 926

Enabling a Database 927

Modal Prompts 928

AutomationSecurity 930

Macros in Access 2010 931

Digital Signatures and Certifi cates 934

Types of Digital Certifi cates 935

Using Self-Certifi cation 937

Signed Packages 939

Access Database Engine Expression Service 941

Sandbox Mode in Access 2010 942

Sandbox Mode Limitations 942

Workarounds 943

Summary 944

ftoc.indd xxxftoc.indd xxx 7/5/2010 5:59:09 PM7/5/2010 5:59:09 PM

xxxi

CONTENTS

APPENDIX A: THE ACCESS OBJECT MODEL 945

APPENDIX B: DAO OBJECT METHOD AND
PROPERTY DESCRIPTIONS 999

APPENDIX C: ADO OBJECT MODEL REFERENCE 1035

APPENDIX D: 64-BIT ACCESS 1095

APPENDIX E: REFERENCES FOR PROJECTS 1103

APPENDIX F: RESERVED WORDS AND SPECIAL CHARACTERS 1113

APPENDIX G: NAMING CONVENTIONS 1127

APPENDIX H: THE ACCESS SOURCE CODE CONTROL 1137

APPENDIX I: TIPS AND TRICKS 1145

INDEX 1191

ftoc.indd xxxiftoc.indd xxxi 7/5/2010 5:59:09 PM7/5/2010 5:59:09 PM

	c07
	ftoc

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

